Climatic Change

, Volume 69, Issue 2–3, pp 13–426 | Cite as

Commentary on “The Anthropogenic Greenhouse Era Began Thousands of Years Ago”

  • Michel Crucifix
  • Marie-France Loutre
  • André Berger


Bill Ruddiman (Climatic Change, 61, 261–293, 2003) recently suggested that early civilisations could have saved us from an ice age because land management over substantial areas caused an increase in atmospheric CO2 concentration. Ruddiman suggests a decreasing “natural course” of the Holocene greenhouse gases concentrations and sea-level by referring to analogous situations in the past, namely the last three interglacials. An examination of marine isotopic stage 11 would perhaps make Ruddiman’s argument even more thought-challenging. Yet, the hypothesis of a natural lowering of CO2 during the Holocene contradicts recent numerical simulations of the Earth carbon cycle during this period. We think that the only way to resolve this conflict is to properly assimilate the palæoclimate information in numerical climate models. As a general rule, models are insufficiently tested with respect to the wide range of climate situations that succeeded during the Pleistocene. In this comment, we present three definitions of palæoclimate information assimilation with relevant examples. We also present original results with the Louvain-la-Neuve climate-ice sheet model suggesting that if, indeed, the Holocene atmospheric CO2 increase is anthropogenic, a late Holocene glacial inception is plausible, but not certain, depending on the exact time evolution of the atmospheric CO2 concentration during this period.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bassinot, F. C., Labeyrie, L. D., Vincent, E., Quidelheur, X., Shackleton, N. J. and Lancelot, Y.: 1994, ‘The astronomical theory of climate and the ice age of the Bruhnes-Matuyama magnetic reversal’, Earth Planet. Sci. Lett. 126, 91–108.CrossRefGoogle Scholar
  2. Berger, A.: 1978, ‘Long-term variations of daily insolation and Quaternary climatic changes’, J. Atmos. Sci. 35, 2362–2367.CrossRefGoogle Scholar
  3. Berger, A.: 1979, ‘Insolation signatures of Quaternary climatic changes’, Il Nuovo Cimento 2C, 63–87.Google Scholar
  4. Berger, A., Li, X. S., and Loutre, M. F.: 1999, ‘Modelling northern hemisphere ice volume over the last 3 Ma’, Quat. Sci. Rev. 18, 1–11.CrossRefGoogle Scholar
  5. Berger, A., Loutre, M. F., and Gallée, H.: 1998, ‘Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 ky’, Clim. Dyn. 14, 615–629.CrossRefGoogle Scholar
  6. Bigelow, N., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christensen, T. R., Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. F., McGuire, A. D., Razzhivin, V. Y., Ritchie, J., and Smith, B.: 2003, ‘Climate change and Arctic ecosystems: 1. vegetation changes north of 55^ N between the last glacial maximum, mid-Holocene, and present’, J. Geophys. Res. 108, 8170, doi:10.1029/2002JD002558.CrossRefGoogle Scholar
  7. Brovkin, V., Bendtsen, J., Claussen, M., Kubatzki, C., Petoukhov, V., and Andeev, A.: 2002, ‘Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model’, Global Biogeochem. Cycles 16, 1139, doi:10.1029/2001GB001662.CrossRefGoogle Scholar
  8. Crucifix, M. and Joos, F.: 2004, Carbon isotopes in the glacial ocean: A model study, Scientific Report 1/2004, Institut d’Astronomie et de Géophysique G. Lemaî tre, Université catholique de Louvain.Google Scholar
  9. Droxler, A. W., Poore, R. Z., and Burckle, L. H.: 2003, ‘Introduction’, in Droxler, A. W. Poore, R. Z., and Burckle, L. H. (eds.), Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, Volume 137 of AGU Monograph Series, American Geophysical Union.Google Scholar
  10. Duplessy, J.-C., Shackelton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D., and Kallel, N.: 1988, ‘Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation’, Paleoceanogr. 3, 343–360.Google Scholar
  11. EPICA community members: 2004, ‘Eight glacial cycles from an Antarctic ice core’, Nature 429, 623–628.Google Scholar
  12. Gallée, H., van Ypersele, J. P., Fichefet, T., Tricot, C., and Berger, A.: 1991, ‘Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. Part I: The climate model’, J. Geophys. Res. 96, 13, 139–13, 161.Google Scholar
  13. Giraud, X., Bertrand, P., Garcon, V., and Dadou, I.: 2003, ‘Interpretation of the nitrogen isotopic signal variations in the Mauritanian upwelling with a 2d physical-biogeochemical model’, Global Biogeochem. Cycles 17, 10.1029/2002GB001951.Google Scholar
  14. Hargreaves, J. C. and Annan, J. D.: 2002, ‘Assimilation of paleo-data in a simple Earth system model’, Clim. Dyn. 19, 371–381.CrossRefGoogle Scholar
  15. Harrison, S. P., Braconnot, P., Joussaume, S., Hewitt, C. D., and Stouffer, R. J.: 2002, ‘Comparison of palæoclimate simulations enhances confidence in models’, EOS, Trans. Am. Geophys. Union 83, 447–447.Google Scholar
  16. Hays, J., Imbrie, J., and Shackleton, N.: 1976, ‘Variations in the earth’s orbit: Pacemaker of ice ages’, Science 194, 1121–1132.Google Scholar
  17. Indermühle, A., Stocker, T. F., Fisher, H., Smith, H., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., and Stauffer, B.: 1999, ‘Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica’, Nature 398, 121–125.CrossRefGoogle Scholar
  18. Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L., and Valdes, P. J.: 2004, ‘Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum’, Global Biogeochem. Cycles 18, doi:10.1029/2003GB002156.Google Scholar
  19. Jouzel, J., Barkov, N., Barnola, J., Bender, M., Chappellaz, J., Genthon, C., Kotlyakov, V., Lorius, C., Petit, J., Raynaud, D., Raisbeek, G., Ritz, C., Sowers, T., Stievenard, M., Yiou, F., and Yiou, P.: 1993, ‘Vostok ice cores : Extending the climatic records over the penultimate glacial period’, Nature 364, 407–412.CrossRefGoogle Scholar
  20. Kageyama, M., Valdes, P. J., Ramstein, G., Hewitt, C., and Wyputta, U.: 1999, ‘Northern hemisphere storm-tracks in present day and last glacial maximum climate simulations: A comparison of the european PMIP models’, J. Climate 12, 742–760.CrossRefGoogle Scholar
  21. Kondratjeva, K. A., Khrutzky, S. F., and Romanovsky, N. N.: 1993, ‘Changes in the extent of permafrost during the Late Quaternary period in the territory of the former Soviet Union’, Permafrost and Periglacial Processes 6, 3–14.Google Scholar
  22. Loutre, M. F.: 2003, ‘Clues from MIS11 to predict the future climate. A modelling point of view’, Earth Planet. Sci. Lett. 212, 213–234, DOI: 10.1016/S0012–821X(03)00235–8.CrossRefGoogle Scholar
  23. Loutre, M. F. and Berger, A.: 2003, ‘Marine Isotope Stage 11 as an analogue for the present interglacial’, Glob. Plan. Change 36, 209–217.CrossRefGoogle Scholar
  24. Milankovitch, M.: 1941, Canon of insolation and the ice-age problem, Narodna biblioteka Srbije, Beograd.Google Scholar
  25. Petit, J., Jouzel, J., Raynaud, D., Barkov, N., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V., Legrand, M., Lipenkov, V., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M.: 1999, ‘Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica’, Nature 399, 429–436.CrossRefGoogle Scholar
  26. Renssen, H., Goosse, H., and Fichefet, T.: 2003, ‘Modeling the effect of freshwater pulses on the early holocene climate: The influence of high-frequency climate variability’, Paleoceanogr. 17, 10.1029/2001PA000649.Google Scholar
  27. Renssen, H. and Osborn, T.: 2003, ‘Investigating Holocene climate variability: Data-model comparison’, Pages News 11, 32–33.Google Scholar
  28. Renssen, H. and Vandenberghe, J.: 2003, ‘Investigation of the relationship between permafrost distribution in NW Europe and extensive winter sea-ice cover in the North Atlantic Ocean during the cold phases of the Last Glaciation’, Quat. Sci. Rev. 22, 209–233.CrossRefGoogle Scholar
  29. Ridgwell, A. J., Watson, A. J., Maslin, M. A., and Kaplan, J.: 2003, ‘Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum’, Paleoceanogr. 18, Art. No. 1083.Google Scholar
  30. Ruddiman, W. F.: 2003, ‘The anthropogenic greenhouse era began thousands of years ago’, Clim. Change 61, 261–293.CrossRefGoogle Scholar
  31. Saltzman, B. and Maasch, K. A.: 1990, ‘A first-order global model of late Cenozoic climate’, Trans. R. Soc. Edinburgh Earth Sci. 81, 315–325.Google Scholar
  32. Sarnthein, M., Gersonde, R., Niebler, S., Pflaumann, U., Spielhagen, R., Thiede, J., Wefer, G., and Weinelt, M.: 2003, ‘Overview of Glacial Atlantic Ocean Mapping’, Paleoceanogr. 18, Art. No. 1030.Google Scholar
  33. Thorne, P., Parker, D. E., Cristy, J. R., and Mears, C. A.: 2004, submitted to Bull. Am. Met. Soc..Google Scholar
  34. Vettoretti, G. and Peltier, W. R.: 2003a, ‘Post-Eemian glacial inception. Part I: The impact of summer seasonal temperature bias’, J. Clim. 16, 889–911.CrossRefGoogle Scholar
  35. Vettoretti, G. and Peltier, W. R. 2003b, ‘Sensitivity of glacial inception to orbital and greenhouse gas climate forcing’, Quat. Sci. Rev. 23, 499–519.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Michel Crucifix
    • 1
  • Marie-France Loutre
    • 2
  • André Berger
    • 2
  1. 1.Met OfficeHadley Centre for Climate Prediction and ResearchExeterU.K.
  2. 2.Institut d’Astronomie et de Géophysique G. LemaîtreUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations