Advertisement

Climatic Change

, Volume 69, Issue 2–3, pp 409–417 | Cite as

Did Humankind Prevent a Holocene Glaciation?

Comment on Ruddiman’s Hypothesis of a Pre-Historic Anthropocene
  • Martin Claussen
  • Victor Brovkin
  • Reinhard Calov
  • Andrey Ganopolski
  • Claudia Kubatzki
Article

Abstract

Recently, W.F. Ruddiman (2003, Climatic Change, Vol. 61, pp. 261–293) suggested that the anthropocene, the geological epoch of significant anthropospheric interference with the natural Earth system, has started much earlier than previously thought (P. I. Crutzen and E. F. Stoermer, 2000, IGBP Newsletter, Vol. 429, pp. 623–628). Ruddiman proposed that due to human land use, atmospheric concentrations of CO2 and CH4 began to deviate from their natural declining trends some 8000 and 5000 years ago, respectively. Furthermore, Ruddiman concluded that greenhouse gas concentrations grew anomalously thereby preventing natural large-scale glaciation of northern North America that should have occurred some 4000–5000 years ago without human interference. Here we would like to comment on (a) natural changes in atmospheric CO2 concentration during the Holocene and (b) on the possibility of a Holocene glacial inception. We substantiate our comments by modelling results which suggest that the last three interglacials are not a proper analogue for Holocene climate variations. In particular, we show that our model does not yield a glacial inception during the last several thousand years even if a declining trend in atmospheric CO2 was assumed.

Keywords

North America Holocene Climate Variation Earth System Atmospheric Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: 1987, ‘Vostok ice core provides 160,000-year record of atmospheric CO2’, Nature 329, 408–414.CrossRefGoogle Scholar
  2. Berger, A.: 1978, ‘Long-term variations of daily insolation and Quaternary climatic change,’ J. Atmos. Sci. 35, 2362–2367.CrossRefGoogle Scholar
  3. Berger, A., Loutre, M. F., and Tricot, Ch.: 1993, ‘Insolation and Earth’s orbital periods’, J. Geophys. Res. 98(D6), 10341–10362.Google Scholar
  4. Bonan, G. B., Pollard, D., and Thompson, S. L.: 1992, ‘Effects of boreal forest vegetation on global climate’, Nature 359, 716–718.CrossRefGoogle Scholar
  5. Broecker, W. S., Clark, E., McCorkle, D. C., Peng, T.-H., Hajdas, I., and Bonani, G.: 1999, ‘Evidence for a reduction in the carbonate ion content of the deep sea during the course of the Holocene,’ Paleooceanography 14, 744–752.CrossRefGoogle Scholar
  6. Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C., Petoukhov, V., and Andreev, A.: 2002, ‘Carbon cycle, vegetation and climate dynamics in the holocene: Experiments with the CLIMBER-2 Model’, Global Biogeochem. Cycl. 16(4), 1139; doi:10.1029/2001GB001662.Google Scholar
  7. Calov, R., Ganopolski, A., Petoukhov, V., Claussen, M., and Greve, R.: 2002, ‘Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model,’ Geophys. Rev. Lett. 29(24), 2216; doi:10.1029/2002GL016078.Google Scholar
  8. Calov, R., Ganopolski, A., Petoukhov, V., Claussen, M., and Greve, R.: 2004, ‘Transient simulation of the last glacial inception. Part I: Glacial inception as a bifurcation in the climate system,’ Climate Dyn. (in press).Google Scholar
  9. Claussen, M.: 1997, ‘Modelling biogeophysical feedback in the African and Indian Monsoon region,’ Climate Dyn. 13, 247–257.CrossRefGoogle Scholar
  10. Claussen, M., Brovkin, V., Ganopolski, A., Kubatzki, C., Petoukov, V., and Rahmstorf, S.: 1999, ‘A new model for climate system analysis,’ Environ. Model. Assess. 4, 209–216.CrossRefGoogle Scholar
  11. Claussen, M., Brovkin, V., Petoukhov, V., and Ganopolski, A.: 2001, ‘Biogeophysical versus biogeochemical feedbacks of large-scale land-cover change,’ Geophys. Rev. Lett. 26(6), 1011– 1014.CrossRefGoogle Scholar
  12. Crutzen, P. I. and Stoermer, E. F.: 2000, ‘The Anthropocene’, IGBP Newsletter 41, 12.Google Scholar
  13. EPICA community members: 2004, ‘Eight glacial cycles from an Antarctic ice core,’ Nature 429, 623–628.Google Scholar
  14. Falkowski, P., Scholes, P. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F. T., Moore, B., III, Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., and Steffen, W.: 2000, ‘The global carbon cycle: A test of our knowledge of Earth as a system,’ Science 290, 291–296.CrossRefPubMedGoogle Scholar
  15. Foley, J.: 1994, ‘The sensitivity of the terrestrial biosphere to climatic change: A simulation of the middle Holocene,’ Global Biogeochem. Cycl. 8, 505–525.CrossRefGoogle Scholar
  16. Gajewski, K., Viau, A., Sawada, M., Atkinson, D., and Wilson, S.: 2001, ‘Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years,’ Global Biogeochem. Cycl. 15, 297–310.CrossRefGoogle Scholar
  17. Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V., and Petoukhov, V.: 1998, ‘The influence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene,’ Science 280, 1916–1919.CrossRefPubMedGoogle Scholar
  18. Ganopolski, A., Petoukhov, V., Rahmstorf, S., Brovkin, V., Claussen, M., Eliseev, A., and Kubatzki, C., 2001: ‘CLIMBER-2: A climate system model of intermediate complexity. Part II: Model sensitivity’, Climate Dyn. 17, 735–751.CrossRefGoogle Scholar
  19. Greve, R.: 1997, ‘A continuum-mechanical formulation for shallow polythermal ice sheets’, Phil. Trans. R. Soc. Lond. A 355, 921–974Google Scholar
  20. Harrison, S. P., Jolly, D., Laarif, F., Abe-Ouchi, A., Dong, B., Herterich, K., Hewitt, C., Joussaume, S., Kutzbach, J. E., Mitchell, J., de Noblet, N., and Valdes, P.: 1998, ‘Intercomparison of simulated global vegetation distributions in response to 6 Kyr BP orbital forcing’, J. Climate 11, 2721.CrossRefGoogle Scholar
  21. Indermühle, A., Stocker, T. F., Joos, F., Fischer, H., Smith, H. J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., and Stauffer, B.: 1999, ‘Holocene carbon cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica’, Nature 398, 121–126.CrossRefGoogle Scholar
  22. Joos, F., Gerber, S., and Prentice, I. C.: 2004, ‘Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum’, Global Biogeochem. Cycl. 18(2), GB2002.CrossRefGoogle Scholar
  23. Kleypas, J. A.: 1997, ‘Modeled estimates of global reef habitat and carbonate production since the last glacial maximum’, Paleoceanography 12, 533–545.CrossRefGoogle Scholar
  24. Loutre, M. F. and Berger, A.: 2000, ‘Future climatic changes: Are we entering an exceptionally long interglacial?’, Climatic Change 46, 61–90.CrossRefGoogle Scholar
  25. Milliman, J. D.: 1993, ‘Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state’, Global Biogeochem. Cycl. 7, 927–957.Google Scholar
  26. Paillard, D.: 1998, ‘The timing of Pleistocene glaciations from a simple multiple-state climate model’, Nature 391, 378–381.CrossRefGoogle Scholar
  27. Paillard, D.: 2001, ‘Glacial cycles: Towards a new paradigm’, Rev. Geophys. 39(3), 325–346.CrossRefGoogle Scholar
  28. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. -M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, B., and Stievenard, M.: 1999, ‘Climate and atmospheric history of the past 420,000 years from the Vostol ice core, Antarctica’, Nature 399, 429–436.CrossRefGoogle Scholar
  29. Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S.: 2000, ‘CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate’, Climate Dyn. 16(1), 1–17.Google Scholar
  30. Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J., and Wallace, D. W. R.: 2001, ‘The carbon cycle and atmospheric carbon dioxide’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P., Dai, X., Maskell, K. and Johnson, C. I. (eds.): 2001, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 881 pp.Google Scholar
  31. Ridgwell, A. J., Watson, A. J., Maslin, M. A., and Kaplan, J. O.: 2003, ‘Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum’, Paleoceanography 18, 1083.CrossRefGoogle Scholar
  32. Ruddiman, W. F.: 2003, ‘The anthropocene greenhouse era began thousands of years ago’, Clim. Change 61, 261–293.CrossRefGoogle Scholar
  33. Stirling, C. H., Esat, T. M., Lambeck, K., and McCulloch, M. T.: 1998, ‘Timing and duration of the last Interglacial: Evidence for a restricted interval of widespread coral reef growth,’ Earth Planet. Sci. Lett. 135, 115–130.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Martin Claussen
    • 1
    • 2
  • Victor Brovkin
    • 1
  • Reinhard Calov
    • 1
  • Andrey Ganopolski
    • 1
  • Claudia Kubatzki
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institute of PhysicsPotsdam UniversityPotsdamGermany

Personalised recommendations