Climatic Change

, Volume 73, Issue 3, pp 267–318 | Cite as

Future Sulfur Dioxide Emissions

  • Steven J. Smith
  • Hugh Pitcher
  • T. M. L. Wigley
Article

Abstract

The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for integrated assessment modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In most cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baoming, Z.: 1994, ‘Clean coal production and ... use of coal in China’, in The Clean and Efficient use of Coal and Lignite: Its Role in Energy, Environment and Life, International Energy Agency, Paris, France.Google Scholar
  2. Brenkert, A., Smith, S. J., Kim, S. H., and Pitcher, H. M.: 2003, Model Documentation: MiniCAM 2001, PNNL.Google Scholar
  3. CNN: 2001, ‘China cracks down on illegal mines’, CNN.com, 2.25.2001 (http://www.cnn.com/2001/WORLD/asiapcf/east/02/25/china.mines/).
  4. Dai, A., Wigley, T. M. L., Boville, B. A., Kiehl, J. T., and Buja, L. E.: 2000, ‘Climates of the twentieth and twenty first centuries simulated by the NCAR Climate System Model’, J. Climate 14, 485– 519.Google Scholar
  5. Dasgupta, S., Mody, A., Roy, S., and Wheeler, D.: 2001, ‘Environmental regulation and development: A cross-country empirical analysis’, Oxford Dev. Stud. 29(2).Google Scholar
  6. EEA-ETC/ACC: 2002, European Environment Agency and European Topic Centre on Air Emissions (http://eea.eu.int/)
  7. Energy Information Agency (EIA): 2001, International Energy Outlook 2000 (DOE/EIA-0484).Google Scholar
  8. Energy Information Agency (EIA): 2002a, ‘China country analysis’, http://www.eia.doe.gov/emeu/cabs/china.html.
  9. Energy Information Agency (EIA): 2002b, ‘China country analysis’, http://www.eia.doe.gov/.
  10. Framework Convention on Climate Change (FCCC): 1998, ‘Review of the implementation of commitments and of other provisions of the convention. Second compilation and synthesis of second national communications. Addendum. Tables of inventories of anthropogenic emissions and removals of greenhouse gases for 1990–1995 and projections up to 2020’, FCCC/CP/1998/11/Add.2.Google Scholar
  11. Fujita, S.: 1993, ‘Sanseiu kenkyu 100 nen no rekishi to sono hensen’, J. Res. Environ. 29, 82– 88.Google Scholar
  12. Grübler, A.: 1998a, ‘A review of global and regional sulfur emission scenarios’, Mitigat. Adaptat. Strat. Global Change 24, 383–418.Google Scholar
  13. Grübler, A.: 1998b, Technology and Global Change, Cambridge University Press, Cambridge, UK.Google Scholar
  14. Grübler, A.: 1998c, ‘Modeling purchasing power parities’, unpublished.Google Scholar
  15. Harbaugh, W. T., Levinson, A., and Wilson, D. M.: 2002, ‘Reexamining the empirical evidence for an environmental Kuznets curve’, Rev Econ. Stat. 83(4), 541–551.Google Scholar
  16. Harvey, L. D. D.: 2000, Global Warming: The Hard Science, Prentice-Hall, New York, pp. 48–51.Google Scholar
  17. Hilton, F. G. H. and Levinson, A.: 1998, ‘Factoring the environmental Kuznets curve: Evidence from automotive lead emissions’, J. Environ. Econ. Manage. 35, 126–141.CrossRefGoogle Scholar
  18. International Energy Agency/Organization for Economic Cooperation and Development (IEA/OECD): 1997, Energy Statistics and Balances (diskette service), International Energy Agency, Paris.Google Scholar
  19. Logan, J., Gou, Y., Shi, Y., Chandler, W., and Zhou, D.: 1998, China's Electric Power Options: An Analysis of Economic and Environmental Costs, Pacific Northwest National Laboratory, Washington, DC.Google Scholar
  20. Logan, J.: 2001, ‘Chinese energy and carbon trends: Did coal consumption really decline so dramatically?’ Pacific Asian J. Energy 11(1), 1–13.Google Scholar
  21. Mylona, S.: 1993, Trends of Sulphur Dioxide Emissions, Air Concentrations and Depositions of Sulphur in Europe Since 1980, EMEP/MSC-W Report 2/93.Google Scholar
  22. Mylona, S.: 1996, ‘Sulphur dioxide emissions in Europe 1880–1991 and their effect on sulphur concentrations and depositions’, Tellus 48B, 662–689.Google Scholar
  23. Nakicenovic, N. and Swart, R. (eds.): 2000, Special Report on Emissions Scenarios, Cambridge University Press, Cambridge, UK.Google Scholar
  24. NEPO: 1997, Energy Development in Thailand, National Energy Policy Office, NEPO. http://www.nepo.go.th/doc/doc-1997Report.html.
  25. Qi, L., Hao, J., and Lu, M.: 1995, ‘SO2 emission scenarios of eastern China’, Water Air Soil Pollut. 85, 1873–1878.Google Scholar
  26. Ramaswamy, V., et~al.: 2001, ‘Radiative forcing of climate change’, in Houghton, J. T., et~al. (eds.), Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK.Google Scholar
  27. Raper, S. C. B., Wigley, T. M. L., and Warrick, R. A.: 1996, in Milliman, J. D. and Haq, B. U. (eds.), Sea-Level Rise and Coastal Subsidence: Causes, Consequences and Strategies, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 11–45.Google Scholar
  28. Roehrl, R. A. and Riahi, K.: 2000, ‘Technology dynamics and greenhouse gas emissions mitigation: A cost assessment’, Technol. Forecast. Social Change 63, 231–261.Google Scholar
  29. Shah, J., Nagpal, T., Johnson, T., Amann, M., Carmichael, G., Foell, W., Green, C., Hettelingh, J.-P., Hordijk, L., Li, J., Peng, C., Pu, Y., Ramankutty, R., and Streets, D.: 2000, ‘Integrated analysis for acid rain in Asia: Policy implications and results of rains – Asia model’, Annu. Rev. Energy Environ. 25, 339–375.CrossRefGoogle Scholar
  30. Shine, K. P. and de Forster, P. M. F.: 1999, ‘The effect of human activity on radiative forcing of climate change: A review of recent developments’, Global Planet. Change 20, 205–225.CrossRefGoogle Scholar
  31. Smith, S. J., Andres, R., Conception, E., and Lurz, J.: 2004, ‘Historical sulfur dioxide emissions 1850–2000: Methods and results’, PNNL, JGCRI Research Report, PNNL-14537. Available at globalchange.umd.edu.Google Scholar
  32. Smith, S. J., Pitcher, H., and Wigley, T. M. L.: 2001, ‘Historic and regional anthropogenic sulfur dioxide emissions’, Global Planet. Change 29(1–2), 99–119.Google Scholar
  33. Summers, R. and Heston, A.: 1991, ‘The Penn World Table (Mark 5): An expanded set of international comparisons, 1950–1988’, Q. J. Econ. 106(2), 327–368.Google Scholar
  34. US Environmental Protection Agency (USEPA): 2002, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2000, USEPA #236-R-02-003, Washington, DC.Google Scholar
  35. US Environmental Protection Agency (USEPA): 1996, National Air Pollutant Emission Trends, 1900–1995, EPA-454/R-96-007, Washington, DC.Google Scholar
  36. US Environmental Protection Agency (USEPA): 1998, National Air Pollutant Emission Trends Procedures Document, 1900–1996, EPA-454/R-98-008, Washington, DC.Google Scholar
  37. United Nations: 2001, Long-Range World Population Projections: Based on the 1998 Revision, Department of Economic and Social Affairs – Population Division.Google Scholar
  38. Wigley, T. M. L.: 1991, ‘Could reducing fossil-fuel emissions cause global warming’, Nature 349, 503–506.CrossRefGoogle Scholar
  39. Wigley, T. M. L. and Raper, S. C. B.: 1992, ‘Implications for climate and sea-level of revised IPCC emissions scenarios’, Nature 357, 293–300.CrossRefGoogle Scholar
  40. Wigley, T. M. L. and Raper, S. C. B.: 2002, ‘Reasons for larger warming projections in the IPCC Third Assessment Report’, J. Climate 15, 2945–2952.Google Scholar
  41. Wigley, T. M. L., Richels, R., and Edmonds, J. A.: 1996, ‘Economic and environmental choices in the stabilization of atmospheric CO2 concentrations’, Nature 379, 240–243.CrossRefGoogle Scholar
  42. Wigley, T. M. L., Smith, S. J., and Prather, M. J.: 2002, ‘Radiative forcing due to reactive gas emissions’, J. Climate 15(18), 2690–2696.CrossRefGoogle Scholar
  43. World Bank: 1992, World Development Report 1992, Oxford University Press, New York.Google Scholar
  44. World Bank: 1998, World Development Indicators 1998, CD-ROM.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Steven J. Smith
    • 1
  • Hugh Pitcher
    • 1
  • T. M. L. Wigley
    • 2
  1. 1.Joint Global Change Research InstituteMarylandU.S.A.
  2. 2.National Center for Atmospheric ResearchBoulderU.S.A.

Personalised recommendations