Climatic Change

, Volume 73, Issue 3, pp 395–414 | Cite as

Inter-Annual Variability and Decadal Trends in Alpine Spring Phenology: A Multivariate Analysis Approach

  • Sibylle Studer
  • Christof Appenzeller
  • Claudio Defila
Article

Abstract

Plant phenological observations are of increasing value as indicators of climate change and variability. We developed a robust multispecies estimate for Swiss Alpine spring phenology for the period 1965–2002 by applying empirical orthogonal function (EOF) analysis on a combination of 15 spring phases. The impact of climate parameters such as temperature and precipitation on the phenological development was investigated using a multivariate statistical model. This multispecies estimate proved to be a good approach to assess the pattern of spring appearance during the last 40 years. It revealed an earlier onset of spring in recent years, mainly since 1988 when a clear shift in spring appearance occurred. The mean overall trend of 1.5 days per decade was clearly driven by winter and spring temperatures whereas precipitation showed no significant influence. The dominant EOF patterns suggested a general climate forcing for the observed inter-annual variability independent of single plant phases. A more regional phenology signal was found in the second EOF mode, indicating slightly weaker phenological trends in southern Switzerland as well as in higher altitudes. Both, temperature and precipitation contributed to this pattern significantly. Analysis of single phases confirmed the pattern of the multispecies estimate. All species showed trends towards earlier appearance ranging from −1 to −2.8 days per decade and the appearance dates had a very high covariance with temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G., and Scheifinger, H.: 2002, ‘Changes in European spring phenology’, Int. J. Climatol. 22(14), 1727–1738.CrossRefGoogle Scholar
  2. Ahas, R., Jaagus, J., and Aasa, A.: 2000, ‘The phenological calendar of Estonia and its correlation with mean air temperature’, Int. J. Biometeorol. 44, 159–166.CrossRefGoogle Scholar
  3. Appenzeller, C., Stocker, T. F., and Schmittner, A.: 2000, ‘Climate change and natural climate variability: Chance for surprise’, Integrated Assess. 1, 301–1306.Google Scholar
  4. Beaubien, E. G. and Freeland, H. J.: 2000, ‘Spring phenology trends in Alberta, Canada: Links to ocean temperature’, Int. J. Biometeorol. 44, 53–59.CrossRefGoogle Scholar
  5. Begert, M., Schlegel, T., and Kirchhofer, W.: in press, ‘Homogeneous temperature and precipitation series of Switzerland from 1864–2000.’ Int. J. Climatol.Google Scholar
  6. Bergant, K., Kajfe-Bogotaj, L., and Crepinsek, Z.: 2002, ‘Statistical downscaling of general-circulation-model- simulated average monthly air temperature to the beginning of flowering of the dandelion (Taraxacum officinale) in Slovenia’, Int. J. Biometeorol. 46, 22–32.CrossRefGoogle Scholar
  7. Braswell, B. H., Schimel, D. S., Linder, E., and Moore, B. I.: 1997, ‘The response of global terrestrial ecosystems to interannual temperature variability’, Science 278, 870–872.CrossRefGoogle Scholar
  8. Bretherton, C. S., Smith, C., and Wallace, J. M.: 1992, ‘An intercomparison of methods for finding coupled patterns in climate data’, J. Clim. 6(5), 541–560.Google Scholar
  9. Buermann, W., Anderson, B., Tucker, C. J., Dickinson, R. E., Lucht, W., Potter, C. S., and Myneni, R. B.: 2003, ‘Interannual covariability in northern hemisphere air temperatures and greenness associated with El Niño-Southern oscillation and the arctic oscillation’, J. Geophys. Res. 108(D13), 11,1–11,16.CrossRefGoogle Scholar
  10. Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M., and Peterson, D. H.: 2001, ‘Changes in the onset of spring in the western united states’, Bull. Am. Meteorol. Soc. 82(3), 399–415.CrossRefGoogle Scholar
  11. Chmielewski, F. M. and Rötzer, T.: 2001, ‘Response of tree phenology to climate change across Europe’, Agric. For. Meteorol. 108, 101–112.CrossRefGoogle Scholar
  12. Chmielewski, F. M. and Rötzer, T.: 2002, ‘Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes’, Clim. Res. 19(3), 257– 264.Google Scholar
  13. Defila, C. and Clot, B.: 2001, ‘Phytophenological trends in Switzerland’, Int. J. Biometeorol. 45, 203–207.CrossRefGoogle Scholar
  14. Efroymson, M. A.: 1960, ‘Multiple regression analysis’, in Ralston, A. and Wilf, H. S. (eds.), Mathematical Methods for digital Computers, Wiley, New York, pp. 191–203.Google Scholar
  15. Fitter, A. H., Fitter, R. S. R., Harris, I. T. B., and Williamson, M. H.: 1995, ‘Relationships between first flowering date and temperature in the flora of a locality in central England’, Funct. Ecol. 9, 55–60.Google Scholar
  16. Heide, O. M.: 1993, ‘Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days’, Physiol. Plant. 89, 187–191.CrossRefGoogle Scholar
  17. Heikinheimo, M. and Lappalainen, H.: 1997, ‘Dependence of the flower bud burst of some plant taxa in Finland on effective temperature sum: Implications for climate warming’, Ann. Bot. Fennici 34(4), 229–243.Google Scholar
  18. IPCC: 2001, Climate Change 2001: Synthesis Report. A contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 398.Google Scholar
  19. Los, S. O., Collatz, G. J., Bounoua, L., Sellers, P. J., and Tucker, C. J.: 2001, ‘Global interannual variations in sea surface temperature and land surface vegetation, air temperature, and precipitation’, J. Clim. 14, 1535–1549.CrossRefGoogle Scholar
  20. Maak, K. and von Storch, H.: 1997, ‘Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L. in Northern Germany’, Int. J. Biometeorol. 41, 5–12.CrossRefGoogle Scholar
  21. Matulla, C., Scheifinger, H., Menzel, A., and Koch, E.: 2003, ‘Exploring two methods for statistical downscaling of Central European phenological time series’, Int. J. Biometeorol. 48, 56–64.CrossRefGoogle Scholar
  22. Menzel, A.: 2000, ‘Trends in phenological phases in Europe between 1951 and 1996’, Int. J. Biometeorol. 44, 76–81.CrossRefGoogle Scholar
  23. Menzel, A.: 2003, ‘Plant phenological anomalies in Germany and their relation to air temperature and NAO’, Clim. Change 57, 243–263.CrossRefGoogle Scholar
  24. Menzel, A., Estrella, N., and Fabian, P.: 2001, ‘Spatial and temporal variability of the phenological seasons in Germany from 1951–1996’, Global Change Biol. 7(6), 657–666.CrossRefGoogle Scholar
  25. Miller, A. J.: 1990, Subset Selection in Regression, Chapman and Hall, London, p. 229.Google Scholar
  26. North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J.: 1982, ‘Sampling errors in the estimation of empirical orthogonal functions’, Mon. Weather Rev. 110(7), 699–706.CrossRefGoogle Scholar
  27. Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W. J., Thomas, J. A., and Warren, M.: 1999, ‘Polewards shifts in geographical ranges of butterfly species associated with regional warming’, Nature 399, 579–583.CrossRefGoogle Scholar
  28. Parmesan, C. and Yohe, G.: 2003, ‘A globally coherent fingerprint of climate change impacts across natural systems’, Nature 421, 37–42.CrossRefGoogle Scholar
  29. Penuelas, J., Filella, I., and Comas, P.: 2002, ‘Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region’, Global Change Biol. 8(6), 531–544.CrossRefGoogle Scholar
  30. Roetzer, T., Wittenzeller, M., Haeckel, H., and Nekovar, J.: 2000, ‘Phenology in central Europe - differences and trends of spring phenophases in urban and rural areas’, Int. J. Biometeorol. 44, 60–66.CrossRefGoogle Scholar
  31. Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., and Pounds, J. A.: 2003, ‘Fingerprints of global warming on wild animals and plants’, Nature 421, 57–60.CrossRefGoogle Scholar
  32. Schaber, J. and Badeck, F. W.: 2003, ‘Physiology-based phenology models for forest tree species in Germany’, Int. J. Biometeorol. 47, 193–201.CrossRefGoogle Scholar
  33. Scheifinger, H., Menzel, A., Koch, E., Peter, C., and Ahas, R.: 2002, ‘Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe’, Int. J. Climatol. 22(14), 1739–1755.CrossRefGoogle Scholar
  34. Schwartz, M. D. and Reiter, B. E.: 2000, ‘Changes in North American spring’, Int. J. Climatol. 20(8), 929–932.CrossRefGoogle Scholar
  35. Spano, D., Cesaraccio, C., Duce, P., and Snyder, R. L.: 1999, ‘Phenological stages of natural species and their use as climate indicators’, Int. J. Biometeorol. 42, 124–133.CrossRefGoogle Scholar
  36. Sparks, T. H.: 1999, ‘Phenology and the changing pattern of bird migration in Britain’, Int. J. Biometeorol. 42, 134–138.CrossRefGoogle Scholar
  37. Sparks, T. H. and Jeffree, E. P.: 2000, ‘An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK’, Int. J. Biometeorol. 44, 82–87.CrossRefGoogle Scholar
  38. S-PLUS: 2000, S-PLUS 6 for Unix. Seattle, WA, Insightful Corporation.Google Scholar
  39. Stöckli, R. and Vidale, P. L.: 2004, ‘European plant phenology and climate as seen in a 20 year AVHRR land-surface parameter dataset’, Int. J. Remote Sens. 25(17), 3303–3330.Google Scholar
  40. Thomas, C. D. and Lennon, J. J.: 1999, ‘Birds extend their ranges northwards’, Nature 399, 213.Google Scholar
  41. Van Vliet, A. J. H., Overeem, A., De Groot, R. S., Jacobs, A. F. G., and Spieksma, F. T. M.: 2002, ‘The influence of temperture and climate change on the timing of pollen release in the Netherlands’, Int. J. Climatol. 22(14), 1757–1767.Google Scholar
  42. Visser, M. E. and Hollemann, L. J. M.: 2001, ‘Warmer springs disrupt the synchrony of oak and winter moth phenology’, Proc. R. Soc. London B 268, 189–194.Google Scholar
  43. Walther, G. R., Carraro, G., and Klötzli, F.: 2001, ‘Evergreen broad-leaved species as indicators for climate change’, in Walther, G. R., Burga, C. A., and Edwards, P. J. (eds.), “Fingerprints” of Climate Change, Kluwer Academic Publishers, New York, pp. 151–161.Google Scholar
  44. Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. C., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairlein, F.: 2002, ‘Ecological responses to recent climate change’, Nature 416, 389–395.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Sibylle Studer
    • 1
  • Christof Appenzeller
    • 1
  • Claudio Defila
    • 1
  1. 1.Federal Office of Meteorology and Climatology (MeteoSwiss)ZurichSwitzerland

Personalised recommendations