Climatic Change

, 73:375 | Cite as

Climate Suitability for Stable Malaria Transmission in Zimbabwe Under Different Climate Change Scenarios

  • Kristie L. EbiEmail author
  • Jessica Hartman
  • Nathan Chan
  • John Mcconnell
  • Michael Schlesinger
  • John Weyant


Climate is one factor that determines the potential range of malaria. As such, climate change may work with or against efforts to bring malaria under control. We developed a model of future climate suitability for stable Plasmodium falciparum malaria transmission in Zimbabwe. Current climate suitability for stable malaria transmission was based on the MARA/ARMA model of climatic constraints on the survival and development of the Anopheles vector and the Plasmodium falciparum malaria parasite. We explored potential future geographic distributions of malaria using 16 projections of climate in 2100. The results suggest that, assuming no future human-imposed constraints on malaria transmission, changes in temperature and precipitation could alter the geographic distribution of malaria in Zimbabwe, with previously unsuitable areas of dense human population becoming suitable for transmission. Among all scenarios, the highlands become more suitable for transmission, while the lowveld and areas with low precipitation show varying degrees of change, depending on climate sensitivity and greenhouse gas emission stabilization scenarios, and depending on the general circulation model used. The methods employed can be used within or across other African countries.


Malaria Plasmodium Falciparum Malaria Transmission Climate Sensitivity Dense Human Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albritton, D. L. and Meira Filho, L. G., Coordinating lead authors: 2001, Technical Summary. Working Group 1, Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK.Google Scholar
  2. Blair Research Institute: 1996, 1996 Annual Report: Epidemiology of Plasmodium falciparum drug resistance in Zimbabwe, Blair Research Institute, Harare, Zimbabwe.Google Scholar
  3. Breman, J. G.: 2001, ‘The ears of the hippopotamus: Manifestations, determinants and estimates of the malaria burden’, Am. J. Trop. Med. Hygiene 64(Suppl 1), 1–11.Google Scholar
  4. Chan, N. Y., Smith, F., Wilson, T. F., Ebi, K. L., and Smith, A. E.: 1999, ‘An integrated assessment framework for climate change and infectious diseases’, Environ. Health Perspect. 107, 329–337.Google Scholar
  5. Craig, M. H., Snow, R. W., and le Sueur, D: 1999, ‘A climate-based distribution model of malaria transmission in sub-Saharan Africa’, Parasitol. Today 15, 105–111.Google Scholar
  6. Freeman, T.: 1995, Malaria: Zimbabwe 1995. A Review of the Epidemiology of Malaria Transmission and Distribution in Zimbabwe and the Relationship of Malaria Outbreaks to Preceding Meteorological Conditions, Unpublished document, March 1995.Google Scholar
  7. Freeman, T. and Bradley, M.: 1996, ‘Temperature is predictive of severe malaria years in Zimbabwe’, Trans. Royal Soc. Trop. Med. Hyg. 90, 232.CrossRefGoogle Scholar
  8. Gallup, J. and Sachs, J.: 2001, ‘The economic burden of malaria’, Am. J. Trop. Med. Hygiene 64(Suppl~1), 85–96.Google Scholar
  9. Githeko, A. K. and Ndegwa, W.:2001, ‘Predicting malaria epidemics in the Kenyan highlands using climate data: A tool for decision makers’, Global Change Human Health 2, 54–63.Google Scholar
  10. Greenwood, B. and Mutabingwa, T.: 2002, ‘Malaria in 2002’, Nature 415, 670–672.CrossRefGoogle Scholar
  11. Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedell, S., Ruedy, R., Russel, G., and Stone, P.: 1988, ‘Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model’, J. Geophys. Res. 93, 9341–9364.Google Scholar
  12. Henderson-Sellers, A., Dickinson, R. E., Durbridge, T. B., Kennedy, P. J., McGuffie, K., and Pitman, A. J.: 1993, ‘Tropical deforestation: Modeling local to regional-scale climate change’, J. Geophys. Res. 98, 7289–7315.CrossRefGoogle Scholar
  13. Hutchinson, M. F., Hix, H. A., McMahon, J. P., and Ord, K. D.: 1995, Africa: A Topographic and Climatic Database, Centre for Resource and Environmental Studies, Australian National University.Google Scholar
  14. Hulme, M., Doherty, R. M., Ngara, T., New, M. G., and Lister, D.: 2001, ‘African climate change: 1900–2100’, Clim. Res. 17, 145–168.Google Scholar
  15. Janssen, M. and Martens, P.: 1997, ‘Modelling malaria as a complex adaptive system’, Artificial Life 3, 213–236.CrossRefGoogle Scholar
  16. Lindblade, K. A., Walker, E. D., Onapa, A. W., Katungu, J., and Wilson, M. L.: 2000, ‘Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda’, Trop. Med. Int. Health 5, 263–274.Google Scholar
  17. Lindsay, S. W. and Martens, P.: 1998, ‘Malaria in the African highlands: Past, present and future’, Bull. WHO 76, 33–45.Google Scholar
  18. Makono, R. and Sibanda, S.: 1999, ‘Review of the prevalence of malaria in Zimbabwe with specific reference to parasite drug resistance (1984–96)’, Trans. Royal Soc.Trop. Med. Hygiene 93, 449–452.CrossRefGoogle Scholar
  19. Malaria Foundation International, Accessed April 2004.
  20. MARA/ARMA: 1998, Towards an Atlas of Malaria Risk in Africa, Durban, South Africa.Google Scholar
  21. Martens, P., Kovats, R. S., Nijhof, S., deVries, P., Livermore, M. T. J., Bradley, D. J., Cox, J., and McMichael, A. J.: 1999, ‘Climate change and future populations at risk of malaria’, Global Environ. Change 9, S89–S107.Google Scholar
  22. McFarlane, N. A., Boer, N. A., Blanchet, J. P., and Lazare, M.: 1992, ‘The Canadian Climate Centre second generation general circulation model and its equilibrium climate’, J. Clim. 5, 1013– 1077.CrossRefGoogle Scholar
  23. Mendelsohn, R., Schlesinger, M., and Williams, L.: 2000, ‘Comparing impacts across climate models’, Integrated Assess. 1, 37–48.Google Scholar
  24. Reiter, P.: 2001, ‘Climate change and mosquito-borne disease’, Environ. Health Perspect. 109, 41–161.Google Scholar
  25. Remme, J., Binka, F., and Nabarro, D.: 2001, ‘Toward a framework and indicators for monitoring Roll Back Malaria’, Am. J. Trop. Med. Hygiene 64(Suppl 1), 1–11.Google Scholar
  26. Rogers, D. J. and Randolph, S. E.: 2000, ‘The global spread of malaria in a future, warmer world’, Science 289, 1763–1769.CrossRefGoogle Scholar
  27. Ropelewski, C. F. and Halpert, M. S.: 1987, ‘Global and regional scale precipitation patterns associated with the El Niño-Southern Oscillation’, Mon. Weather Rev. 115, 1606–1626.Google Scholar
  28. Schlesinger, M. E. and Williams, L. J.: 1997, COSMIC—Country Specific Model for Intertemporal Climate, EPRI, Palo Alto, CA.Google Scholar
  29. Snow, R. W., Craig, M., Deichmann, U., and Marsh, K.: 1999, ‘Estimating mortality, morbidity, and disability due to malaria among Africa's non-pregnant population, Bull. WHO 77, 624–640.Google Scholar
  30. Tanser, F. C., Sharp, B., and le Sueur, D.: 2003, ‘Potential effect of climate change on malaria transmission in Africa’, Lancet 362, 1792–1798.CrossRefGoogle Scholar
  31. Taylor, P. and Mutambu, S. L.: 1986, ‘A review of the malaria situation in Zimbabwe with special reference to the period 1972–1981’, Trans. Royal Soc. Trop. Med. Hygiene 80, 12–19.Google Scholar
  32. Trape, J.: 2001, ‘The public health impact of chloroquine resistance in Africa’, Am. J. Trop. Med. Hygiene 64(Suppl 1), 12–17.Google Scholar
  33. Trape, J. F., Quinet, M. C., Nzingoula, S., Senga, P., Tchichelle, F., Carme, B., Candito, D., Mayanda, H., and Zoulani, A.: 1987, ‘Malaria and urbanization in Central Africa: The example of Brazzaville. Part B: Pernicious attacks and mortality’, Trans. Royal Soc. Trop. Med. Hygiene 81(Suppl 2), 34–42.Google Scholar
  34. Unganai, L. S.: 1996, ‘Historic and future climatic change in Zimbabwe’, Clim. Res. 6, 137–145.Google Scholar
  35. Van Lieshout, M., Kovats, R. S., Livermore, M. T. J., and Martens, P.: 2004, ‘Climate change and malaria: Analysis of the SRES climate and socio-economic scenarios’, Global Environ. Change 14, 87–99.Google Scholar
  36. Williams, L., Shaw, D., and Mendelsohn, R.: 1998, ‘Evaluating GCM output with impact models’, Clim. Change 39, 111–133.CrossRefGoogle Scholar
  37. Wilson, C. A. and Mitchell, J. F. B.: 1987, ‘A doubled CO2 climate sensitivity experiment with a global climate model including a simple ocean’, J. Geophys. Res. 92, 13315–13343.Google Scholar
  38. World Health Organization: 2002, The World Health Report 2002: Reducing Risks, Promoting Healthy Life, WHO, Geneva.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Kristie L. Ebi
    • 1
    Email author
  • Jessica Hartman
    • 2
  • Nathan Chan
    • 3
  • John Mcconnell
    • 4
  • Michael Schlesinger
    • 5
  • John Weyant
    • 6
  1. 1.Exponent, Inc.AlexandriaU.S.A.
  2. 2.New YorkU.S.A.
  3. 3.Exponent, Inc.U.S.A.
  4. 4.Department of Emergency MedicineOregon Health & Science UniversityPortlandU.S.A.
  5. 5.University of Illinois at Urbana-ChampaignUrbanaU.S.A.
  6. 6.Stanford UniversityStanfordU.S.A.

Personalised recommendations