Advertisement

Climatic Change

, Volume 73, Issue 3, pp 239–265 | Cite as

Climate Change Prediction

  • Filippo GiorgiEmail author
Article

Abstract

The concept of climate change prediction in response to anthropogenic forcings at multi-decadal time scales is reviewed. This is identified as a predictability problem with characteristics of both first kind and second kind (due to the slow components of the climate system). It is argued that, because of the non-linear and stochastic aspects of the climate system and of the anthropogenic and natural forcings, climate change contains an intrinsic level of uncertainty. As a result, climate change prediction needs to be approached in a probabilistic way. This requires a characterization and quantification of the uncertainties associated with the sequence of steps involved in a climate change prediction. A review is presented of different approaches recently proposed to produce probabilistic climate change predictions. The additional difficulties found when extending the prediction from the global to the regional scale and the implications that these have on the choice of prediction strategy are finally discussed.

Keywords

Climate Change Regional Scale Climate System Slow Component Prediction Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M. R. and Ingram, W. J.: 2003, ‘Constraints of future changes in climate and the hydrologic cycle’, Nature 419, 224–231.Google Scholar
  2. Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R., and Delworth, T. L.: 2000, ‘Quantifying the uncertainty in forecasts of anthropogenic climate change’, Nature 407, 617–620.CrossRefGoogle Scholar
  3. Andronova, N. G. and Schlesinger, M. E.: 2001, ‘Objective estimation of the probability density function for climate sensitivity’, J. Geophys. Res. 106, 22,605–622,611.CrossRefGoogle Scholar
  4. Boer, G. J.: 1994, ‘Predictability regimes in atmospheric flow’, Mon. Wea. Rev. 122, 2285–2295.CrossRefGoogle Scholar
  5. Boer, G. J., Flato, G., and Ramsden, D.: 2000, ‘A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate to the twenty-first century’, Clim. Dyn. 16, 427–450.Google Scholar
  6. Chase, T. N., Pielke, R. A. Sr., Kittel, T. G. F., Zhao, M., Pitman, A. J., Running, S. W., and Nemani, R. R.: 2001, ‘Relative climatic effects of land cover change and elevated carbon dioxide combined with aerosols: A comparison of model results and observations’, J. Geophys. Res. 106, 31685–31691.CrossRefGoogle Scholar
  7. Christensen, O. B., Gaertner, M. A., Prego, J. A., and Polcher, J.: 2001, ‘Internal variability of regional climate models’, Clim. Dyn. 17, 875–887.CrossRefGoogle Scholar
  8. Claussen, M., Mysak, L. A., Weaver, A. J., Crucifix, M., Fichefet, T., Loutre, M. F., Weber, S. L., Alcamo, J., Alexeev, V. A., Berger, A., Calov, R., Ganopolski, A., Goosse, H., Lohmann, G., Lunkeit, F., Mokhov, I. I., Pethoukov, V., Stone, P., and Wang, Z.: 2002, ‘Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models’, Clim. Dyn. 18, 579–586.Google Scholar
  9. Collins, M.: 2002, ‘Climate predictability on interannual to decadal time scales: The initial value problem’, Clim. Dyn. 19, 671–692.Google Scholar
  10. Corti, S., Molteni F., and Palmer, T.N.: 1999, ‘Signature of recent climate change in frequencies of natural atmospheric circulation regimes’, Nature 398, 799–802.Google Scholar
  11. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: 2000, ‘Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model’, Nature 408, 184– 187.Google Scholar
  12. Cubasch, U., Meehl, G. A., Boer, G. J., Stouffer, R. J., Dix, M., Noda, A., Senior, C. A., Raper, S., and Yap, K. S.: 2001, ‘Projections of Future Climate Change’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis, Chapter 9, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, pp. 525–582.Google Scholar
  13. Cubasch, U., Waskewitz, J., Hegerl, G., and Perlwitz, J.: 1995, ‘Regional climate changes as simulated in time-slice experiments’, Clim. Change 31, 273–304.CrossRefGoogle Scholar
  14. Deque, M. and Piedelievre, J. P.: 1995, ‘High resolution climate simulation over Europe’, Clim. Dyn. 11, 321–340.CrossRefGoogle Scholar
  15. Forest, C. E., Stone, P. H., Sokolov, A. P., Allen, M. R., and Webster, M. D.: 2002, ‘Quantifying uncertainties in climate system properties with the use of recent climate observations’, Science 295, 113–117.CrossRefGoogle Scholar
  16. Friedlingstein, P., Dufresne, J. L, Cox, P. M., and Rayner, P.: 2003, ‘How positive is the feedback between climate change and the carbon cycle?’, Tellus B 55, 692–700.CrossRefGoogle Scholar
  17. Giorgi, F.: 2002a, ‘Variability and trends of sub-continental scale surface climate in the twentieth century. Part II: AOGCM simulations’, Clim. Dyn. 18, 693–708.Google Scholar
  18. Giorgi, F.: 2002b, ‘Dependence of surface climate interannual variability on spatial scale’, Geophys. Res. Lett. 29, art. no. 2101, DOI: 10.1029/2002GL016175.Google Scholar
  19. Giorgi, F. and Bi, X.: 2000, ‘A study of internal variability of a regional climate model’, J. Geophys. Res. 105, 29503–29521.CrossRefGoogle Scholar
  20. Giorgi, F. and Francisco, R.: 2000, ‘Evaluating uncertainties in the prediction of regional climate change’, Geophys. Res. Lett. 27, 1295–1298.CrossRefGoogle Scholar
  21. Giorgi, F., Hewitson, B. C., Christensen, J. H., Hulme, M., vonStorch, H., Whetton, P. H., Jones, R. G., Mearns, L. O., and Fu, C.: 2001a, ‘Regional Climate Information—Evaluation and Projections’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., and Xiaoxu, D. (eds.), Climate Change 2001: The Scientific Basis, Chapter 10, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, pp. 583–638.Google Scholar
  22. Giorgi, F. and Mearns, L. O.: 1991, ‘Approaches to regional climate change simulation: A review’, Rev. Geol. 29, 191–216.Google Scholar
  23. Giorgi, F. and Mearns, L. O.: 1999, ‘Introduction to special section: Regional climate modeling revisited’, J. Geophys. Res. 104, 6335–6352.Google Scholar
  24. Giorgi, F. and Mearns, L. O.: 2002, ‘Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averaging (REA)” method’, J. Clim. 15, 1141–1158.CrossRefGoogle Scholar
  25. Giorgi, F. and Mearns, L. O.: 2003, ‘Probability of regional climate change calculated using the Reliability Ensemble Averaging (REA) method’, Geophys. Res. Lett. 30, art. no. 1629, doi:10.1029/2003GL017130.Google Scholar
  26. Giorgi, F., Shields Brodeur, C., and Bates, G. T.: 1994, ‘Regional climate change scenarios over the United States produced with a nested regional climate model’, J. Clim. 7, 375–399.CrossRefGoogle Scholar
  27. Giorgi, F., Whetton, P. H., Jones, R. G., Christensen, J. H., Mearns, L. O., Hewitson, B. C., vonStorch, H., Francisco, R., and Jack, C.: 2001b, ‘Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings’, Geophys. Res. Lett. 28, 3317–3320.CrossRefGoogle Scholar
  28. Hewitson, B. C. and Crane, R. G.: 1996, ‘Climate downscaling: Techniques and applications’, Clim. Res. 7, 85–95.Google Scholar
  29. Hurrell, J. W.: 1995, ‘Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation’, Science 269, 676–679.Google Scholar
  30. IPCC: 2000, ‘Emission Scenarios’, A special report of Working Group III of the Intergovernmental Panel on Climate Change, Nakicenovic N., Coordinating Lead Author, Cambridge University Press, Cambridge, U.K., 599 pp.Google Scholar
  31. IPCC: 2001, ‘Climate Change 2001, The Scientific Basis’, Summary for Policymakers, Cambridge University Press, Cambridge, U.K., 20 pp.Google Scholar
  32. Johns, T. C., Gregory, J. M., Stott, P., and Mitchell, J. F. B.: 2001,‘Assessment of the similarity between modelled and observed near surface temperature changes using ensembles’, Geophys. Res. Lett. 28, 1007–1010.CrossRefGoogle Scholar
  33. Jones, R. G., Murphy, J. M., Noguer, M., and Keen, M.: 1997, ‘Simulation of climate change over Europe using a nested regional climate model. I: Comparison of driving and regional model responses to a doubling of carbon dioxide’, Q. J. R. Meteorol. Soc. 123, 265–292.CrossRefGoogle Scholar
  34. Jones, R. N.: 2000, ‘Managing uncertainty in climate change projections – Issues for impact assessment’, Clim. Change 45, 403–419.CrossRefGoogle Scholar
  35. Lorenz, E. N.: 1969, ‘The predictability of a flow which possesses many scales of motion’, Tellus 11, 290–307.Google Scholar
  36. Lorenz, E. N.: 1975, ‘Climate predictability: The physical basis of climate modeling’, WMO, GARP Publ. Ser. 16, 132–136.Google Scholar
  37. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. H.: 1997, ‘A Pacific interdecadal climate oscillation with impacts on salmon production’, Bull. Amer. Meteorol. Soc. 78, 1069–1079.Google Scholar
  38. Mastrandrea, M. D. and Schneider, S. H.: 2004, ‘Probabilistic integrated assessment of ‘Dangerous’ climate change’, Science 304, 571–575.CrossRefGoogle Scholar
  39. McAvaney, B. J., Covey, C., Joussaume, S., Kattsov, V., Kitoh, A., Ogana, W., Pitman, A. J., Weaver, A. J., Wood, R. A., and Zhao, Z.-C.: 2001, ‘Model Evaluation’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., and Xiaoxu, D. (eds.), Climate Change 2001; The Scientific Basis, Chapter 8, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, pp. 471–523.Google Scholar
  40. Mearns, L. O., Bogardi, I., Giorgi, F., Matyasovszky, I., and Pilecki, M.: 1999, ‘Comparison of climate change scenarios generated from regional climate model experiments and statistical downscaling’, J. Geophys. Res. 104, 6603–6621.Google Scholar
  41. Mearns, L. O., Hulme, M., Carter, T. R., Leemans, R., Lal, M., and Whetton, P. H.: 2001, ‘Climate Scenario Development’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., and Xiaoxu, D. (eds.), Climate Change 2001: The Scientific Basis, Chapter 13, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, pp. 739–768.Google Scholar
  42. Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stauffer, R. J.: 2000, ‘The Coupled Model Intercomparison Project (CMIP)’, Bull. Amer. Meteorol. Soc. 81, 313–318.Google Scholar
  43. Menon, S., Hansen, J., Nazarenko, L., and Luo, Y.: 2002, ‘Climate effects of black carbon aerosols in China and India’, Science 297, 2250–2253.CrossRefGoogle Scholar
  44. Mitchell, J. F. B., Johns, T. C., Eagles, M., Ingram, W. J., and Davis, R. A.: 1999, ‘Towards the construction of climate change scenarios’, Clim. Change 41 547–581.CrossRefGoogle Scholar
  45. Mitchell, J. F. B., Karoly, D. J., Hegerl, G. C., Zwiers, F. W., Allen, M. R., and Marengo, J.: 2001, ‘Detection of Climate Change and Attribution of Causes’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., and Xiaoxu, D. (eds.), Climate Change 2001: The Scientific Basis, Chapter 12, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, pp. 697–738.Google Scholar
  46. Moss, R. H. and Schneider, S. H.: 2000, in Pachauri, R., Taniguchi, T., and Tanaka, K. (eds.), Guidance Papers on the Cross Cutting Issues of the Third Assessment Report, World Metorological Organization, Geneva, pp. 33–57.Google Scholar
  47. Murphy, J. M.: 1999, ‘An evaluation of statistical and dynamical techniques for downscaling local climate’, J. Clim. 12, 2256–2284.CrossRefGoogle Scholar
  48. Murphy, J. M.: 2000, ‘Predictions of climate change of Europe using statistical and dynamical downscaling techniques’, Int. J. Climatol. 20, 489–501.CrossRefGoogle Scholar
  49. Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Allen, M. R., and Stainforth, D. J.: 2004, ‘Quantifying uncertainties in climate change from a large ensemble of general circulation model predictions’, Nature 430, 768–722.CrossRefGoogle Scholar
  50. NRC: 2002, Abrupt Climate Change, Inevitable Surprises, National Research Council, National Academic press, Washington, DC, 230 pp.Google Scholar
  51. Palmer, T. N.: 1999, ‘A nonlinear dynamical perspective on climate prediction’, J. Clim. 12, 575–591.CrossRefGoogle Scholar
  52. Palmer, T. N.: 2001, ‘A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models’, Q. J. R. Meteorol. Soc. 127, 279–303.CrossRefGoogle Scholar
  53. Palmer, T. N. and Räisänen, J.: 2002, ‘Quantifying the risk of extreme seasonal precipitation events in a changing climate’, Nature 415, 512–514.CrossRefGoogle Scholar
  54. Philander, S. G.: 1990, El Niño, La Nina, and the Southern Oscillation, Academic, San Diego, CA, 293 pp.Google Scholar
  55. Pielke, R. A. Sr.: 1998, ‘Climate prediction as an initial value problem’, Bull. Amer. Meteorol. Soc. 79, 2743–2746.Google Scholar
  56. Räisänen, J. and Palmer, T. N.: 2001, ‘A probability and decision-model analysis of a multimodel ensemble of climate change simulations’, J. Clim. 14, 3212–3226.Google Scholar
  57. Raper, S. C. B., Gregory, J. M., and Osborn, T. J.: 2001, ‘Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results’, Clim. Dyn. 17, 601–613.Google Scholar
  58. Rial, J. A., Pielke, R. A. Sr., Beniston, M., Claussen, M., Canadell, J., Cox, P., Held, H., De Noblet-Ducoudre, N., Prinn, R., Reynolds, J. F., and Salas, J. D.: 2004, ‘Nonlinearities, feedbacks, and critical thresholds within the Earth's climate system’, Clim. Change 65, 11–38.CrossRefGoogle Scholar
  59. Schneider, S. H.: 2001, ‘What is “Dangerous” Climate Change?’, Nature 411, 17–19.CrossRefGoogle Scholar
  60. Schneider, S. H.: 2002, ‘Can we estimate the likelihood of climatic changes at 2100?’, Clim. Change 52, 441–451.Google Scholar
  61. Stocker, T. F., Clarke, G. K. C., Le Treut, H., Lindzen, R. S., Meleshko, V. P., Mugara, R. K., Palmer, T. N., Pierrehumbert, R. T., Sellers, P. J., Trenberth, K. E., and Willebrand, J.: 2001, ‘Physical Climate Processes and feedbacks’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J. and Xiaoxu, D. (eds.), Climate Change 2001; The Scientific Basis, Chapter 7, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, pp. 417–470.Google Scholar
  62. Stott, P. A. and Kettleborough, J. A.: 2002, ‘Origins and estimates of uncertainty in predictions of twenty-first century temperature rise’, Nature 416, 723–726.CrossRefGoogle Scholar
  63. Stott, P. A., Tett, S. F. B., Jones, G. S., Allen, M. R., Ingram, W. J., and Mitchell, J. F. B.: 2001, ‘Attribution of twentieth century temperature change to natural and anthropogenic causes’, Clim. Dyn. 17, 1–21.Google Scholar
  64. Tebaldi, C., Smith, R. W., Nychka, D., and Mearns, L. O.: 2005, ‘Quantifying uncertainty in projections of regional climate change: A bayesian approach to the analysis of multi-model ensembles,’ J. Climate, in press.Google Scholar
  65. Trenberth, K. E. (ed.): 1992, Climate System Modeling, Cambridge University Press, Cambridge, U.K., 788~pp.Google Scholar
  66. Trenberth, K. E. and Hoar, T. J.: 1997, ‘El Niño and climate change’, Geophys. Res. Lett. 24, 3057–3060.CrossRefGoogle Scholar
  67. Visser, H., Folkert, R. J. M., Hoekstra, J., and deWolff, J. J.: 2000, ‘Identifying key sources of uncertainty in climate change projections’, Clim. Change 45, 421–457.CrossRefGoogle Scholar
  68. von Storch, H. and Zwiers, F. W.: 1999, Statistical Analysis in Climate Research, Cambridge University Press, Cambridge, U.K., 484 pp.Google Scholar
  69. Washington, W. M. and Parkinson, C. L.: 1986, An Introduction to Three-Dimensional Climate Modeling, University Science Books, Mills Valley, CA, U.S.A., 422 pp.Google Scholar
  70. Webster, M. D., Babiker, M., Mayer, M., Reilly, J. M., Harnish, J., Sarofim, M. C., and Wang, C.: 2002, ‘Uncertainty in emissions projections for climate Models’, Atmos. Environ. 36, 3659–3670.Google Scholar
  71. Webster, M. D., Forest, C., Reilly, J. M., Babiker, M., Kiklighter, D., Mayer, M., Prinn, R., Sarofim, M. C., Sokolov, A., Stone, P., and Wang, C.: 2003, ‘Uncertainty analysis of climate change and policy response’, Clim. Change 61, 295–320.Google Scholar
  72. Wigley, T. M. L.: 1993, ‘Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes’, Tellus 45B, 409–425.Google Scholar
  73. Wigley, T. M. L. and Raper, S. C. B.: 1992, ‘Implications for climate and sea level of revised IPCC emissions scenarios’, Nature 357, 293–300.CrossRefGoogle Scholar
  74. Wigley, T. M. L. and Raper, S. C. B.: 2001, ‘Interpretation of high projections for global-mean warming’, Nature 293, 451–454.Google Scholar
  75. Zhao, M. and Pitman, A. J.: 2002, ‘The impact of land cover change and increasing carbon dioxide on the extreme and frequency of maximum temperature and convective precipitation’, Geophys. Res. lett. 29, Art. No. 1078.Google Scholar
  76. Zhao, M., Pitman, A. J., and Chase, T. N.: 2001, ‘Climatic effects of land cover change at different carbon dioxide levels’, Clim. Res. 17, 1–18.Google Scholar
  77. Zwiers, F. W. and Zhang, X. B.: 2003 ‘Towards regional-scale climate change detection’, J. Clim. 16, 793–797.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations