Climatic Change

, Volume 72, Issue 3, pp 321–338 | Cite as

Carbon Sequestration in Arable Soils is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing

  • Changsheng Li
  • Steve Frolking
  • Klaus Butterbach-Bahl


Strategies for mitigating the increasing concentration of carbon dioxide (CO2) in the atmosphere include sequestering carbon (C) in soils and vegetation of terrestrial ecosystems. Carbon and nitrogen (N) move through terrestrial ecosystems in coupled biogeochemical cycles, and increasing C stocks in soils and vegetation will have an impact on the N cycle. We conducted simulations with a biogeochemical model to evaluate the impact of different cropland management strategies on the coupled cycles of C and N, with special emphasis on C-sequestration and emission of the greenhouse gases methane (CH4) and nitrous oxide (N2O). Reduced tillage, enhanced crop residue incorporation, and farmyard manure application each increased soil C-sequestration, increased N2O emissions, and had little effect on CH4 uptake. Over 20 years, increases in N2O emissions, which were converted into CO2-equivalent emissions with 100-year global warming potential multipliers, offset 75–310% of the carbon sequestered, depending on the scenario. Quantification of these types of biogeochemical interactions must be incorporated into assessment frameworks and trading mechanisms to accurately evaluate the value of agricultural systems in strategies for climate protection.


Nitrous Oxide Radiative Force Nitrous Oxide Emission Biogeochemical Model Trading Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambus, P. and Christenson, S.: 1994, ‘Measurement of N2O emission from a fertilized grassland: An analysis of spatial variability’, J. Geophys. Res. 99, 16549–16555.CrossRefGoogle Scholar
  2. Aulakh, M. S., Rennie, D. A., and Paul, E. A.: 1984, ‘Gaseous nitrogen losses from soils under zero-till as compared with conventional-till management systems’, J. Environ. Qual. 13, 130–136.Google Scholar
  3. Bouwman, A. F., Boumans, L. J. M., and Batjes, N. H.: 2002, ‘Modeling global annual N2O and NO emissions from fertilized fields’, Global Biogeochem. Cycles 16(4), doi:10.1029/2001GB001812.Google Scholar
  4. Bowman, R. A. and Focht, D. D.: 1974, ‘The influence of glucose and nitrate concentrations upon denitrification rates in a sandy soil’, Soil Biol. Biochem. 6, 297–301.CrossRefGoogle Scholar
  5. Bremner, J. M. and Shaw, K.: 1958, ‘Denitrification in soil. II. Factors affecting denitrification’, J. Agric. Sci. 51, 40–52.Google Scholar
  6. Burford, J. R. and Bremner, J. M.: 1975, ‘Relationships between denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter’, Soil Biol. Biochem. 7, 389–394.CrossRefGoogle Scholar
  7. Cai, Z., Sawamoto, S., Li, C., Kang, G., Boonjawat, J., Mosier, A., and Wassmann, R.: 2003, ‘Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems’, Global Biogeochem. Cycles. 17(4), doi:10.1029/2003GB002046.Google Scholar
  8. Christensen, S.: 1983, ‘Nitrous oxide emission from a soil under permanent grass: Seasonal and dismal fluctuations as influenced by manuring and fertilization’, Soil Biol. Biochem. 15, 531–536.CrossRefGoogle Scholar
  9. Christensen, S., Simkins, S., and Tiedje, J. M.: 1990, ‘Spatial variation in denitrification: Dependency of activity centers on the soil environment’, Soil Sci. Soc. Am. J. 54, 1608–1613.Google Scholar
  10. Clayton, H., McTaggart, I. P., Parker, J., Swan, L., and Smith, K. A.: 1997, ‘Nitrous oxide emissions from fertilized grassland: A 2-year study of the effects of N fertilizer form and environmental conditions’, Biol. Fert. Soils 25, 252–260.CrossRefGoogle Scholar
  11. Conrad, R.: 1996, ‘Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, N2O and NO)’, Microbiol. Rev. 60, 609–640.PubMedGoogle Scholar
  12. Conservation Technology Information Center.: 1999, National Survey of Conservation Tillage Practices. (Conservation Tillage Information Center, West Lafayette, IN).Google Scholar
  13. Conservation Technology Information Center.: 2002, National Crop Residue Management Survey ( (Conservation Tillage Information Center, West Lafayette, IN).Google Scholar
  14. Crill, P., Keller, M., Weitz, A., Grauel, B., and Veldkamp, E.: 2000, ‘ Intensive field measurements of N2O emissions from a tropical agricultural soil’, Global Biogeochem. Cycles 14, 85–96.CrossRefGoogle Scholar
  15. Dong, Y. S., Scharffe, D., Domroes, M., Qi, Y. C., and Zhang, S.: 2000, ‘N2O emissions from agricultural soils in the North China Plain: The effect of chemical fertilizer and organic manure’, J. Environ. Sci. 12, 463–468.Google Scholar
  16. Doran, J. W.: 1980, ‘Soil microbial and biochemical changes associated with reduced tillage’, Soil Sci. Soc. Am. J. 44, 765–771.Google Scholar
  17. Duxbury, J. M., Bouldin, D. R., Terry, R. E., and Tat, R. L.: 1982, ‘Emissions of nitrous oxide from soils’, Nature 298, 462–464.CrossRefGoogle Scholar
  18. Federer, C. A. and Klemedtsson, L.: 1988, ‘Some factors limiting denitrification in slurries of acid forest soils’, Scand. J. For. Res. 3, 425–435.Google Scholar
  19. Flessa, H., Dorsch, P., and Beese, F.: 1995, ‘Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany’, J. Geophy. Res. 100, 23115–23124.CrossRefGoogle Scholar
  20. Flessa, H., Dorsch, P., Beese, F., Konig, H., and Bouwman, A. F.: 1996, ‘Influece of cattle wastes on nitrous oxide and methane fluxes in pasture land’, J. Environ. Qual. 25, 1366–1370.Google Scholar
  21. Flessa, H., Wild, U., Klemisch, M., and Pfadenhauer, J.: 1998, ‘Nitrous oxide and methane fluxes from organic soils under agriculture’, Eur. J. Soil Sci. 49, 327–335.CrossRefGoogle Scholar
  22. Gollehon, N., Caswell, M., Ribaudo, M., Kellogg, R., Lander, C., and Letson, C.: 2001, Confined Animal Production and Manure Nutrients. Resource Economics Division, Economic Research Service, U. S. Department of Agriculture. Agriculture Information Bulletin No. 771. 39 pp.Google Scholar
  23. Goodroad, L. L. and Keeney, D. R.: 1984, ‘Nitrous oxide emission from forest, marsh, and prairie ecosystems’, J. Environ. Qual. 13, 448–452.Google Scholar
  24. Grace, P. R.: 1996, ‘The Waite Permanent Rotation Trial’ in Powlson, D. S., Smith, P., and Smith, J. U. (eds.), Evaluation of Soil Organic Matter Models Using Existing, Long-Term Datasets, NATO ASI Series I, Vol. 38, Springer-Verlag, Heidelberg, pp. 335–340.Google Scholar
  25. Grant, B., Smith, W. N., Desjardins, R., Lemkc, R., and Li, C.: 2004, ‘Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada’, Clim. Change 65, 315–332.CrossRefGoogle Scholar
  26. Hao, X., Chang, C., Carefoot, J. M., Janzen, H. H., and Ellert, B. H.: 2001, ‘Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management’, Nutr. Cycle Agroecosys. 60, 1–8.CrossRefGoogle Scholar
  27. Harrison, R. M., Yamulki, S., Goulding, K. W. T., and Webster, C. P.: 1995, ‘Effect of fertilizer application on NO and N2O fluxes from agricultural fields’, J. Geophys. Res. 100, 25923-25931.CrossRefGoogle Scholar
  28. Jenkinson, D.: 1991, ‘The Rothamsted long-term experiments: Are they still of use?’, Agron. J. 83, 2–10.Google Scholar
  29. Jin, X. and Gruber, N.: 2003, ‘Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions’, Geophys. Res. Lett. 30(24), 2249, doi:10.1029/2003/GL018458.CrossRefGoogle Scholar
  30. Khalil, M. I., Rosenani, A. B., Van Cleemput, O., Fauziah, C. I., and Shamshuddin, J.: 2002, ‘Nitrous oxide emissions from an ultisol of the humid tropics under maize-groundnut rotation’, J. Environ. Qual. 31, 1071–1078.PubMedGoogle Scholar
  31. Klingensmith, K. M.: 1987, ‘Denitrification in floodplain successional soils of the Tanana River in interior Alaska’, Agroborealis 19, 39–42.Google Scholar
  32. Körchens, M. and Müller, A.: 1996, ‘The static experiment at Bad Lauchstädt, Germany’, in Powlson, D. S., Smith, P., and Smith, J. U. (eds.), Evaluation of Soil Organic Matter Models Using Existing, Long-Term Datasets, NATO ASI Series I, Vol. 38, Springer-Verlag, Heidelberg, pp. 369-376.Google Scholar
  33. Lackner, K. S.: 2003, ‘A guide to CO2 sequestration’, Science 300, 1677–1678.CrossRefPubMedGoogle Scholar
  34. Lal, R., Follett, R. F., Kimble, J. M., and Cole, C. V.: 1999, ‘Management of U. S. cropland to sequester carbon in soil’, J. Soil Water Conserv. 54, 374–381.Google Scholar
  35. Larcher, W.: 1995, Physiological Plant Ecology, 3{rd} Edn., Springer, Berlin, 506 pp.Google Scholar
  36. Leffelaar, P. A. and Wessel, W. W.: 1988, ‘Denitrification in a homogeneous, closed system: experiment and simulation’, Soil Sci. 146, 335–349.Google Scholar
  37. Li, C.: 1995, ‘Impact of agricultural practices on soil C storage and N2O emissions in 6 states in the U.S.’, in Lal, R., Kimble, J., Levine, E., and Stewart, B. A. (eds.), Soil Management and Greenhouse Effect, Lewis Publishers, Boca Raton FL, pp. 101–112.Google Scholar
  38. Li, C.: 2000, ‘Modeling trace gas emissions from agricultural ecosystems’, Nutr. Cycl. Agroecosys. 58, 259–276.CrossRefGoogle Scholar
  39. Li, C., Frolking, S., and Frolking, T. A.: 1992, ‘A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity’, J. Geophy. Res. 97, 9759–9776.Google Scholar
  40. Li, C., Frolking, S., and Harriss, R. C.: 1994, ‘Modeling carbon biogeochemistry in agricultural soils’, Global Biogeochem. Cycles 8, 237–254.CrossRefGoogle Scholar
  41. Li, C., Narayanan, V., and Harriss, R.: 1996, ‘Model estimates of nitrous oxide emissions from agricultural lands in the United States’, Global Biogeochem. Cycles 10, 297–306.CrossRefGoogle Scholar
  42. Li, C., Qiu, J. J., Frolking, S., Xiao, X., Salas, W., Moore, B., Boles, S., Huang, Y., and Sass, R.: 2002, ‘Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980–2000’, Geophys. Res. Lett. 29(20), doi:10.1029/2002GL015370.Google Scholar
  43. Li, C., Zhuang, Y. H., Frolking, S., Galloway, J. N., Harriss, R. C., Moore, B., Schimel, D., and Wang, X. K.: 2003, ‘Modeling soil organic carbon change in croplands of China’, Ecol. Appl. 13, 327–336.Google Scholar
  44. Lin, X.: 1998, ‘Status and management of soil organic matter in China’, in Shen, S. (ed.), Soil Fertility of China, Chinese Agricultural Press, Beijing, pp. 111–159 (in Chinese).Google Scholar
  45. Marland, G., West, T. O., Schlamadinger, B., and Canella, L.: 2003, ‘Managing soil organic carbon in agriculture: The net effect on greenhouse gas emissions’, Tellus 55B, 613–621.Google Scholar
  46. Melillo, J. M., Aber, J. D., Steudler, P. A., and Schimel, J. P.: 1983, ‘Denitrification potentials in a successional sequence of northern hardwood forest stands’, in Hallberg, R. (ed.), Environmental Biogeochemistry, Ecol. Bull. (Stockholm) 35, 217–228.Google Scholar
  47. Mosier, A., Schimel, D., Valentine, D., Bronson, K., and Parton, W.: 1991, ‘Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands’, Nature 350, 330–332.CrossRefGoogle Scholar
  48. Mosier, A. R., Stillwell, M., Parton, W. J., and Woodmansee, R. G.: 1981, ‘Nitrous oxide emissions from a native shortgrass prairie’, Soil Sci. Soc. Am. J. 45, 617–619.Google Scholar
  49. Müller, M. M., Sundman, V., and Skujins, J.: 1980, ‘Denitrification in low pH spodosols and peats determined with the acetylene inhibition method’, Appl. Environ. Microbiol. 40, 235-239.Google Scholar
  50. Mummey, D. L., Smith, J. L., and Bluhm, G.: 1998, ‘Assessment of alternative soil management practices on N2O emissions from US agriculture’, Agric., Ecosys. Environ. 70, 79–87.Google Scholar
  51. Odell, R. T., Melsted, S. W., and Walker, W. M.: 1984, ‘Changes in organic carbon and nitrogen of morrow plot soils under different treatments, 1904–1973’, Soil Sci. 137, 160–171.Google Scholar
  52. Pang, P. C. K. and Cho, C. M.: 1984, ‘Oxygen consumption and denitrification activity of a conifer forest soil profile’, Soil Sci. Soc. Am. J. 48, 393–399.Google Scholar
  53. Papen, H. and Butterbach-Bahl, K.: 1999, ‘Three years continuous record of N-trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany: I. N2O-emissions’, J. Geophys. Res. 104, 18487–18503CrossRefGoogle Scholar
  54. Pluth, D. J. and Nommik, H.: 1981, ‘Potential denitrification affected by nitrogen source of a previous fertilization of an acid forest soil from Central Sweden’, Acta Agric. Scand. 31, 235–241.Google Scholar
  55. Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G. Y., and Solomon, S.: 2001, ‘Radiative forcing of climate change’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskel, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, pp. 350–416.Google Scholar
  56. Robertson, G. P. and Tiedje, J. M.: 1987, ‘Nitrous oxide sources in aerobic soils: nitrification, denitrification and other biological processes’, Soil Biol. Biochem. 19, 187–193.CrossRefGoogle Scholar
  57. Robertson, G. P., Paul, E., and Harwood, R. R.: 2000, ‘Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere’, Science 289, 1922–1925.CrossRefPubMedGoogle Scholar
  58. Saggar, S., Andrew, R. M., Tate, K. R., Hedley, C. B., Rodda, N. J., and Townsend, J. A.: 2004, ‘Modelling nitrous oxide emissions from dairy-grazed pastures’, Nutr. Cycling Agroecosys. 68, 243–255.CrossRefGoogle Scholar
  59. Sahrawat, K. L. and Keeney, D. R.: 1986, ‘Nitrous oxide emission from soils’, Adv. Soil. Sci. 4, 103–147.Google Scholar
  60. Six, J., Ogle, S. M., Breidt, F. J., Conant, R. T., Mosier, A. R., and Paustian, K.: 2004, ‘The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term’, Global Change Biol. 10, 155–160.CrossRefGoogle Scholar
  61. Smith, P., Smith, J. U., Powlson, D. S., Arah, J. R. M., Chertov, O. G., Coleman, K., Franko, U., Frolking, S., Gunnewick, H. K., Jenkinson, D. S., Jensen, L. S., Kelly, R. H., Li, C., Molina, J. A. E., Mueller, T., Parton, W. J., Thornley, J. H. M., and Whitmore, A. P.: 1997, ‘A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments’, Geoderma 81, 153–225.CrossRefGoogle Scholar
  62. Smith, P., Goulding, K. W., Smith, K. A., Powlson, D. S., Smith, J. U., Falloon, P., and Coleman, K.: 2001, ‘Enhancing the carbon sink in European agricultural soils: Including trace gas fluxes in estimates of carbon mitigation potential’, Nutr. Cycling Agroecosys. 60, 237–252.CrossRefGoogle Scholar
  63. Smith, W. N., Desjardins, R. L., Grant, B., Li, C., Lemke, R., Rochette, P., Corre, M. D., and Pennock, D.: 2002, ‘Testing the DNDC model using N2O emissions at two experimental sites in Canada’, Can. J. Soil Sci. 82, 365–374.Google Scholar
  64. Stanford, G., Vander Pol, R. A., and Dzienia, S.: 1975, ‘Denitrification rates in relation to total and extractable soil carbon’, Soil Sci. Soc. Am. Proc. 39, 284–289.Google Scholar
  65. Terry, R. E., Tate, R. L., and Ducbury, J. M.: 1981, ‘Nitrous oxide emissions from drained, cultivated organic soils of south Florida’, J. Air Pollut. Control Assoc. 31, 1173–1176.Google Scholar
  66. Terry, R. E.: 1986, ‘Nitrogen transformations in histosols’, in Chen, Y., and Avnimelech, Y. (eds.), The Role of Organic Matter in Modern Agriculture, Martinus Nijhoff Publishers, Dordrecht, Netherlands, pp. 55–70.Google Scholar
  67. Thomson, P. E., Parker, J. P., Arah, J. R. M., Clayton, H., and Smith, K. A.: 1997, ‘Automated soil monolith-flux chamber system for the study of trace gas fluxes’, Soil Sci. Soc. Am. J. 61, 1323–1330.Google Scholar
  68. U.S.D.A. (United States Department of Agriculture): 1992, Supp. to the Morrow plots: A century of Learning, Bull. No. 775, Agriculture Experiment Station, University of Illinois, Champaign-Urbana, IL.Google Scholar
  69. U.S.D.O.E. (United States Department of Energy): 1999, Carbon Sequestration: Research and Development. Office of Science, Office of Fossil Energy, U.S. Department of Energy, Washington, DC.Google Scholar
  70. Velthof, G. L., Kuikman, P. J., and Oenema, O.: 2002. ‘Nitrous oxide emission from soils amended with crop residues’, Nutr. Cycl. Agroecosys. 62, 249–261.CrossRefGoogle Scholar
  71. Vinther, F. P.: 1992, ‘Measured and simulated denitrification activity in a cropped sandy and loamy soil’, Biol. Fert. Soils 14, 43–48.CrossRefGoogle Scholar
  72. West, T. O. and Marland, G.: 2002, ‘A synthesis of carbon seqeuestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States’, Agric. Ecosys. Environ. 91, 217–232.CrossRefGoogle Scholar
  73. Wever, H., Mussen, S., and Merckx, R.: 2002, ‘Dynamics of trace gas production following compost and NO3 amendments to soil at different initial TOC/NO3 ratios’, Soil Biol. Biochem. 34, 1583–1591.CrossRefGoogle Scholar
  74. Xuri, X., Wang, M., and Wang, Y.: 2003, ‘Using a modified DNDC model to estimate N2O fluxes from semi-arid grassland in China’, Soil Biol. Biochem. 35, 615–620.CrossRefGoogle Scholar
  75. Yamulki, S., Wolf, I., Bol, R., Veldcamp, E., Grant, B., Brumme, R., and Jarvis, S.: 2000, ‘Effects of dung and urine amenedments on the isotopic content of N2O released from grasslands’, Rapid Commun. Mass Spectr. 14, 1356–1360.CrossRefGoogle Scholar
  76. Zhang, B.: 2000, ‘Severe status of agricultural eco-environment in China’, China News, 6 June 2000 (in Chinese).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Changsheng Li
    • 1
  • Steve Frolking
    • 1
  • Klaus Butterbach-Bahl
    • 2
  1. 1.Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamU.S.A.
  2. 2.Institute for Meteorology and Climate ResearchAtmospheric Environmental ResearchGarmisch-PartenkirchenGermany

Personalised recommendations