Climatic Change

, Volume 68, Issue 1–2, pp 41–65 | Cite as

Creating Carbon Offsets in Agriculture through No-Till Cultivation: A Meta-Analysis of Costs and Carbon Benefits

  • James Manley
  • G. Cornelis van Kooten
  • Klaus Moeltner
  • Dale W. Johnson


Carbon terrestrial sinks are often seen as a low-cost alternative to fuel switching and reduced fossil fuel use for lowering atmospheric CO2. To determine whether this is true for agriculture, one meta-regression analysis (52 studies, 536 observations) examines the costs of switching from conventional tillage to no-till, while another (51 studies, 374 observations) compares carbon accumulation under the two practices. Costs per ton of carbon uptake are determined by combining the two results. The viability of agricultural carbon sinks is found to vary by region and crop, with no-till representing a low-cost option in some regions (costs of less than $10 per tC), but a high-cost option in others (costs of 100–$400 per tC). A particularly important finding is that no-till cultivation may store no carbon at all if measurements are taken at sufficient depth. In some circumstances no-till cultivation may yield a ‘triple dividend” of carbon storage, increased returns and reduced soil erosion, but in many others creating carbon offset credits in agricultural soils is not cost effective because reduced tillage practices store little or no carbon.


Soil Erosion Carbon Sink Conventional Tillage Carbon Uptake Carbon Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleman, F. 2001, ‘Common bean response to tillage intensity and weed control strategies’, Agronomy J 933, 556–563.CrossRefGoogle Scholar
  2. Allmaras, R. R., Schomberg, H. H., Douglas, C. L., Jr. and Dao, T. H. 2000,‘Soil organic carbon sequestration potential of adopting conservation tillage in U.S. croplands’, J. Soil Water Conserv 553, 365–373.Google Scholar
  3. Angers, D. A., Bolinder, M. A., Carter, M. R., Gregorich, E. G.,Drury, C. F., Liang, B. C.,Voroney, R. P., Simard, R. R., Donald, R. G., Beyaert, R. P. and Martel, J. 1997, ‘Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada’, Soil Tillage Res. 41, 191–201.Google Scholar
  4. Angers, D. A., Voroney, R. P. and Côté, D. 1995, ‘Dynamics of soil organic matter and corn residues affected by tillage practices’, Soil Sci. Soc. Amer. J. 59, 1311–1315.CrossRefGoogle Scholar
  5. Anonymous 1984, ‘Costly energy, lower chemical costs will favor less tillage savings in field preparation costs for no-till corn and soybeans, costs and returns, United States].’ No-till Farmer 136, 4.Google Scholar
  6. Antle, J. A. and McCarl, B. A. 2002, ‘The economics of carbon sequestration in agricultural soils’, in T. Tietenberg and H. Folmer eds., The International Yearbook of Environmental and Resource Economics 2002/2003, Edward Elgar, Cheltenham, UK. pp. 278–310.Google Scholar
  7. Asoegwu, S. N. 1987, ‘Comparison of tillage systems for the production of Egusi-melon Colocynthus citrullus L. and Okra Abelmoschus esculentus L. Moench in Eastern Nigeria’, Crop Res. 272, 77–90.Google Scholar
  8. Aw-Hassan, A. and Stoecker, A. 1994, ‘A public and private analysis of the costs of reducing soil erosion by reduced tillage systems’, Current Farm Econ 672, 23–39.Google Scholar
  9. Bauer, S. G. 1984, An Economic Analysis of the Onsite Benefits and Costs of Reducing Soil Erosion Through Conservation Tillage in the Camas Prairie Region of Northern Idaho. Master’s Thesis, Oregon State University, Corvallis, OR.Google Scholar
  10. Bergstrom, D. W., Monreal, C. M. and St. Jacques, E. 2001, ‘Influence of tillage practice on carbon sequestration is scale-dependent’, Can. J. Soil Sci. 811,63–70.Google Scholar
  11. Bone, S. W., Rask, N., Forster, D. L. and Schurle, B. W. 1976, ‘Evaluation of tillage systems for corn and soybeans’, Ohio Rep. Res. Dev. Biol. Ag. Home Econ. 614,60–63.Google Scholar
  12. Buehring, N. W., Spurlock, S. R., Edwards, N. C., Reginelli, D. B. and Blaine, M. A. 1988, Net Returns for Soybean Reduced Tillage Systems on Three Land Resource Areas. Special bulletin, Mississippi State,Mississippi Agricultural Forestry Experiment Station, 881, 72-75.Google Scholar
  13. Campbell, C. A., Selles, F., Lafond, G. P. and Zentner, R. P. 2001, ‘Adopting zero tillage management: Impact on soil C and N under long-term crop rotations in a thin black chernozem’, Can. J. Soil Sci. 812, 139–148.Google Scholar
  14. Chan, K. Y., Roberts, W. P. and Heenan, D. P. 1992, ‘Organic carbon and associated soil properties of a red earth after 10 years of rotation under different stubble and tillage practices’, Australian J. Soil Res. 30, 71–83.Google Scholar
  15. Clapp, C. E., Allmaras, R. R., Layese, M. F., Linden, D. R. and Dowdy, R. H. 2000, ‘Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota’, Soil Tillage Res 553/4, 127–142.CrossRefGoogle Scholar
  16. Climate Change Plan for Canada 2002, Government of Canada. Accessed online September 25, 2003, at
  17. Curtis, P. S. and Wang, X. 1998, ‘A meta-Analysis of elevated CO2 effects on woody plant mass, form, and physiology’, Oecologia 113, 299–313.CrossRefGoogle Scholar
  18. Dalal, R. C. 1989, ‘Long-term effects of no-tillage, crop residue, and nitrogen application on properties of vertisol’, Soil Sci. Soc. Amer. J. 53, 1511–1515.CrossRefGoogle Scholar
  19. Dick, W. A. 1983, ‘Organic carbon, nitrogen and phosphorus concentrations and pH in soil profiles as affected by tillage intensity’, Soil Sci. Soc. Amer. J. 47, 102–107.CrossRefGoogle Scholar
  20. Dillaha, T. A., Mostaghimi, S. and Heatwole, C. D. 1988,Tillage Effects on Nutrient Loadings of Waterways, Special Bulletin, Mississippi State, Mississippi Agricultural. Forestry Experiment Station 881, 83–85.Google Scholar
  21. Ding, G., Novak, J. M., Amarasiriwardena, D., Hunt, P. G. and Xing, B. 2002,‘Soil organic matter characteristics as affected by tillage management’, Soil Sci. Soc. Amer. J. 66, 421–429.CrossRefGoogle Scholar
  22. Ditsch, D. C., Trimble, R. L. and Wade, J. M. 1988,Tillage Selection: Soil Stewardship Versus Financial Survival, Special Bulletin, Mississippi State, Mississippi Agricultural Forestry Experiment Station 881, 5–8.Google Scholar
  23. Doran, J. W. 1980,‘Soil microbial and biochemical changes associated withreduced tillage’, Soil Sci. Soc. Amer. J. 44, 765–771.CrossRefGoogle Scholar
  24. Doran, J. W., Elliott, E. T. and Paustian, K. 1998,‘Soil microbial activity, N cycling and long-term changes in organic carbon pools as related to fallow tillage management’, Soil Till. Res. 49, 3-18.Google Scholar
  25. Doster, D. H. 1976,‘Economics of alternative tillage systems’, Bull. Ent. Soc. Amer. 223, 295-297.Google Scholar
  26. Doster, D. H., Griffith, D. R., Mannering, J. V. and Parsons, S. D. 1983,‘Economic returns from alternative corn and soybean tillage systems in Indiana’, J. Soil Water Cons. 38, 504–508.Google Scholar
  27. Doster, D. H., Pritchard, T. W. Griffith, D. R. and Parsons, S. D. 1993,Tillage Economics, One-Planter Farms: A Comparison of Expected Revenues and Costs, Six Tillage Systems, Two Crop Rotations, Three Representative Indiana Soils, ID, Purdue University, Agricultural Extension Service, Agricultural Experiment Station. West Lafayette, IN 191, 1–16.Google Scholar
  28. Duffy, M. and Hanthorn, M. 1984,Returns to Corn and Soybean Tillage Practices, Agricultural Economic Report - USDA, 1–14.Google Scholar
  29. Duiker, S. W. and Lal, R. 2000,‘Carbon budget study using CO2 flux measurements from a no till system in central Ohio’, Soil Till. Res. 541/2, 21–30.Google Scholar
  30. Epplin, F. M. and Al-Sakkaf, G. A. 1995,‘Risk-efficient tillage systems and program participation strategies for land subject to conservation compliance’, Rvw. Agr. Econ. 17, 311–321.Google Scholar
  31. Epplin, F. M., Beck, D. E. and Krenzer, E. G. Jr. 1991,‘Impacts of alternative winter wheat planting dates on grain yield and economics for no-till and conventional tillage systems’, Current Farm Economy– Agricultural Experiment Station, Division of Agriculture, Oklahoma State University, 643, 3–12.Google Scholar
  32. FAO: ‘Food and fuel in a warmer world’, News & Highlights, FAO, Newsletter, December 4, 2001.Google Scholar
  33. Featherstone, A. M., Fletcher, J. J., Dale, R. F. and Sinclair, H. R. 1991,‘Comparison of net returns under alternative tillage systems considering spatial weather variability’, J. Prod. Ag. 4, 166-173.Google Scholar
  34. Follett, R. F. 2001,‘Soil management concepts and carbon sequestration incropland soils’, Soil Till. Res 611/2, 77–92.Google Scholar
  35. Greene, W. H. 2000,Econometric Analysis 4th edition, Prentice-Hall, Upper Saddle River, NJ.Google Scholar
  36. Hairston, J. E., Sanford, J. O., Hayes, J. C. and Reinschmiedt, L. L. 1984,‘Crop yield, soil erosion, and net returns from five tillage systems in the Mississippi Blackland Prairie’, J. Soil Water Cons. 39, 391–395.Google Scholar
  37. Halvorsen, A. D., Anderson, R. L. Toman, N. E. and Welsh, J. R. 1994,‘Economic comparison of three winter wheat-fallow tillage systems’, J. Prod. Ag. 7, 381–385.Google Scholar
  38. Hansmeyer, T. L., Linden, D. R., Allan, D. L. and Huggins, D. R. 1998,‘Determining Carbon Dynamics under No-till, Ridge-till, Chisel, and Moldboard Tillage Systems within a Corn and Soybean Cropping Sequence’, in Lal, R. Kimble, J. M., Follett, R. E. and Stewart, B. A. eds. Management of Carbon Sequestration in Soil; Lewis Publishers, Boca Raton, FL, pp. 93-97.Google Scholar
  39. Harman, W. L., Hardin, D. C., Wiese, A. F., Unger, P. W. and Musick, J. T. 1985,‘No-till technology: Impacts on farm income, energy use and groundwater depletion in the plains’, West. J. Agr. Econ. 101, 134–146.Google Scholar
  40. Harman, W. L. and Martin, J. R. 1988,‘An Economic Assessment of Conservation Tillage in Texas’, in Hons, F. M. ed., Conservation Tillage in Texas, Texas Agriculture Experiment Station, College Station, TX, Texas A&M Univ. System.Google Scholar
  41. Hendrix, P. F., Franzluebbers, A. J. and McCracken, D. V. 1998,‘Management effects on C accumulation and loss in soils of the southern appalachian piedmont of Georgia’, Soil Till. Res. 47, 245–251.Google Scholar
  42. Hinman, H. R., Mohasci, S. G. and Young, D. L. 1983,‘Impact of tenure status on economic incentives for conservation tillage’, J. Soil Water Cons. 38, 287–290.Google Scholar
  43. Hsiao, C. 1986,Analysis of Panel Data, Econometric Society Monographs 11, Cambridge University Press, New York.Google Scholar
  44. IPCC Intergovernmental Panel on Climate Change 1997, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual, in Houghton, J. T., Meira, L. G., Filho, L. G., Lim, B., Treanton, K., Mamaty, I., Bonduki, Y., Griggs, D. J. and Callender, B. A. eds., Intergovernmental Panel on Climate Change, Volume 3 quoted in Six et al., 2002.Google Scholar
  45. IPCC Intergovernmental Panel on Climate Change 2000,Land Use, Land-use Change, and Forestry,Cambridge University Press, New York.Google Scholar
  46. Ismail, I., Blevins, R. I. and Frye, W. W. 1994,‘Long-term no-tillage effects on soil properties and continuous corn yields’, Soil Sci. Soc. Amer. J. 58,193–198.CrossRefGoogle Scholar
  47. Johnson, D. W. and Todd, D.E., Jr. 1998,‘Harvesting effects on long-term changes in nutrient pools of mixed oak forest’, Soil Sci. Soc. Amer. J. 62, 1725–1735.CrossRefGoogle Scholar
  48. Jolly, R. W., Edwards, W. M. and Erbach, D. C. 1983,‘Economics of conservation tillage in Iowa’, J. Soil Water Cons. 38, 291–294.Google Scholar
  49. Jones, O. R., Harman, W. L. and Smith, S. J. 1987,‘Agronomic and economic performance of conservation-tillage systems on dryland’, in Optimum Erosion Control at Least Cost:Proceedings of the National Symposiumon Conservation Systems, American Society of Agricultural Engineers, St. Joseph, Michigan, pp. 332–341.Google Scholar
  50. Keeling, J. W., Wendt, C. W., Gannaway, J. R., Onken, A. B., Lyle, W. M., Lascano, R. J. and Abernathy, J. R. 1988,Conservation Tillage Cropping Systems for the Texas Southern High Plains, Special Bulletin, Mississippi State, Mississippi Agricultural Forestry Experiment Station 881, 19–21.Google Scholar
  51. Kern, J. and Johnson, M. 1993,‘Conservation tillage impacts on national soil and atmospheric carbon levels’, Soil Sci. Soc. Amer. J. 57, 200–210.CrossRefGoogle Scholar
  52. Kessavalou, A., Mosier, A. R., Doran, J. W., Drijber, R. A., Lyon, D. J. and Heinemeyer, O. 1998,‘Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat fallow tillage management’, J. Env. Qual. 275, 1094–1104.Google Scholar
  53. King, A. D. 1985,‘Conservation Tillage: Things to Consider, Agriculture Information Bulletin - USDA 461, pp. 23.Google Scholar
  54. Klemme, R.M. 1983,‘An economic analysis of reduced tillage systems in corn and soybean production’, J. Amer. Soc. Farm Mgr. Rural Appraisers 47, 37–44.Google Scholar
  55. Klemme, R. M. 1985,‘A Stochastic dominance comparison of reduced tillage systems in corn and soybean production under risk’, Amer. J. Agr. Econ. 673, 550–562.Google Scholar
  56. Krause, M. A. and Black, J. R. 1995,‘Optimal adoption strategies for no-till technology in Michigan’, Rev. Agr. Econ. 173, 299–310.Google Scholar
  57. Kurkalova, L. A., Kling, C. L. and Zhao, J. 2001,The Subsidy for Adopting Conservation Tillage: Estimation from Observed Behavior, Working Paper 01-WP 286, Center for Agricultural and Rural Development, Iowa State University.Google Scholar
  58. Lal, R., Kimble, L. M., Follett, R. F. and Cole, C. V. 1998,The Potential of U.S. Cropland to Sequester C and Mitigate the Greenhouse Effect, Ann Arbor Press, Chelsea, MI.Google Scholar
  59. Lamb, J. A., Peterson, G. A. and Fenster, C. R. 1985,‘Wheat fallow systems’ effect on a newly cultivated grassland soils’ nitrogen budget’, Soil Sci. Soc. Amer. J. 49, 352–356.CrossRefGoogle Scholar
  60. Larney, F. J., Bremer, E., Janzen, H. H., Johnston, A. M. and Lindwall, C. W. 1997,‘Changes in total, mineralizable and light-fraction soil organic matter with cropping and tillage intensities in semiarid southern Alberta, Canada’, Soil Till. Res. 42, 229–240.Google Scholar
  61. Lerohl, M. L. and van Kooten, G. C. 1995,‘Is soil erosion a problem on the Canadian Prairies?’, Prairie Forum 20, 107–121.Google Scholar
  62. Liu, S. and Duffy, M. D. 1996,‘Tillage systems and profitability: An economic analysis of the Iowa MAX Program’, J. Prod. Ag. 94, 522–527.Google Scholar
  63. Lupwayi, N. Z., Rice, W. A. and Clayton, G. W. 1999,‘Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and crop rotation’, Can. J. Soil Sci. 792, 273–280.Google Scholar
  64. Mann, C. 1990,‘Meta-analysis in the Breech’, Science 249, 476–480.Google Scholar
  65. Martin, M. A., Schreiber, M. M., Riepe, J. R. and Bahr, J. R. 1991,‘The economics of alternative tillage systems, crop rotations, and herbicide use on three representative east-Central corn belt farms’, Weed Sci. 392, 299–307.Google Scholar
  66. Nakao, M., Sohngen, B., Brown, L. and Leeds, R. 1999,The Economics of Vegetative Filter Strips,OSU Extension Fact Sheet AE-6-99.Google Scholar
  67. Norwood, C. A. and Currie, R. S. 1998,‘An agronomic and economic comparison of wheat-corn-fallow and wheat-sorghum-fallow rotations’, J. Prod. Ag. 111, 67–73.Google Scholar
  68. Norwood, C. A. and Dhuyvetter, K. C. 1993,‘An economic comparison of the wheat-fallow and wheat-sorghum-fallow cropping systems’, J. Prod. Ag. 6, 261–266.Google Scholar
  69. Nyborg, M., Solberg, E. D., Malhi, S. S., Izaurralde, R. C. and Fertilizer,N. 1995,‘Crop Residue, and Tillage Alter Soil C and N Content in a Decade’, in Lal, R., Kimble, J. Levine, E. and Stewart, B.A. eds., Soil Management and Greenhouse Effect, Lewis Publishers, Boca Raton, FL, pp. 93–99.Google Scholar
  70. Ohannesian, J. and Elterich, G.J. 1979,Economic Analysis of Alternative Tillage Systems for Delaware Grain Farms, Bulletin of the Delaware Agricultural Experiment Station, Newark, The Station.Google Scholar
  71. Olson, Kent D. and Weber, C. 1990,Impacts of Alternative Tillage, Fertilization, and Herbicide Application Methods on Corn Production Costs and Returns, Department of Agricultural and Applied Economics, University of Minnesota, St. Paul, MN.Google Scholar
  72. Paustian, K., Amdren, O., Janzen, H. H., Lal, R., Smith, P., Tian, G., Tiessen, H., Van Noordwijk, M. and Woomer, P. L. 1997,‘Agricultural soils as a sink to mitigate CO2 emissions’, Soil Use Mgmt 134, supp., 230–244.Google Scholar
  73. Pautsch, G. R., Kurkalova, L. A., Babcock, B. A. and Kling, C. L. 2001,‘The efficiency of sequestering carbon in agricultural soils’, Contemp. Eco. Policy 192, 123–134.Google Scholar
  74. Pearce, A. D., Dillon, C. R., Keisling, T. C. and Wilson, C. E., Jr 1999,‘Economic and agronomic effects of four tillage practices on rice produced on saline soils’, J. Prod. Ag. 122, 305-312.Google Scholar
  75. Peterson, G. A., Halvorson, A. D., Havlin, J. L., Jones, O. R., Lyon, D. J.and Tanaka, D. L. 1998, ‘Reduced tillage and increasing cropping intensity in the great plains conserves soil C’, Soil Till. Res. 47, 207–218.Google Scholar
  76. Phillips, R. E., Blevins, R. L., Thomas, G. W., Frye, W. W. and Phillips, S.H. 1980,‘No-tillage agriculture’, Science 208, 1108–1113.Google Scholar
  77. Phillips, S. R., Olson, K. R., Siemens, J. C. and Ebelhar, S. A. 1997,‘Economics of conservation tillage systems for CRP land in southern Illinois’, J. Prod. Ag. 103, 483–489.Google Scholar
  78. Potter, K. N., Torbert, H. A., Jones, O. R., Matocha, J. E., Morrison, J.E., Jr and Unger, P. W. 1998,‘Distribution and amount of soil organic carbon in long-term management systems in Texas’, Soil Till. Res. 47, 309–321.Google Scholar
  79. Sainju, U. M., Singh, B. P. and Whitehead, W. F. 2002,‘Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA’, Soil Till. Res. 633/4, 167–179.Google Scholar
  80. Salinas-Garcia, J. R., Hons, F. M., Matocha, J. E. and Zuberer, D. A. 1997,‘Soil carbon and nitrogen dynamics as affected by long-term tillage and nitrogen fertilization’, Biol. Fertil. Soils. 252, 182–188.Google Scholar
  81. Sandor, R. L. and Skees, J. R. 1999,‘Creating a market for carbon emissions: Opportunities for U.S. farmers’, Choices, 13–17.Google Scholar
  82. Sanford, J. O., Hairston, J. E. and Reinschmiedt, L. L. 1982,‘Soybean-Wheat Double Cropping: Tillage and Straw Management Glycine max, Triticum aestivum, Yield, Costs, Returns, Mississippi’, Research Report, Mississippi Agricultural and Forestry Experiment Station. 714, 4 p.Google Scholar
  83. Sedjo, R. A. and Marland, G. 2003,‘Inter-trading permanent emissions credits and rented carbon emissions offsets: Some issues and alternatives’, Clim. Policy 34, 435–444.Google Scholar
  84. Segarra, E., Keeling, J. W. and Abernathy, J. R. 1991,‘Tillage and cropping system effects on cotton yield and profitability on the Texas southern high plains’, J. Prod. Agric. 44, 566–571.Google Scholar
  85. Six, J., Elliott, E. T. and Paustian, K. 1999,‘Aggregate and soil organicmatter dynamics under conventional and no-tillage systems’, Soil Sci. Soc. Amer. J. 635, 1350–1358.CrossRefGoogle Scholar
  86. Six, J., Feller, C., Denef, K., Ogle, S. M., de M. Sa, J. C. and Albrecht, A. 2002,‘Soil organic matter, biota and aggregation in temperate and tropical soils- Effects of no-tillage’, Agronomie 22, 755–775.Google Scholar
  87. Smith, E. G., Peters, T. L., Blackshaw, R. E., Lindwall, C. W. and Larney, F. J. 1996,‘Economics of reduced tillage in crop-fallow systems’, Can. J. Soil Sci. 76, 411–416.Google Scholar
  88. Smith, E. G. and Young, D. L. 1999,‘Requiem for Summer Fallow in Western North America?, Draft paper, Department of Agricultural Economics, Washington State University, Pullman, Washington, 8 pp.Google Scholar
  89. Smith, M. A., Carter, P. R. and Imholte, A. A. 1992,‘No-till vs. conventional tillage for late-planted corn following hay harvest’, J. Prod. Ag. 52, 261–264.Google Scholar
  90. Smith, V. K. and Kaoru, Y. 1990,‘Signals or noise? Explaining the variation in recreation benefit estimates’, Amer. J. Agr. Econ. 72, 419–433.Google Scholar
  91. Smolik, J. D. and Dobbs, T. L. 1991,‘Crop yields and economic returns accompanying the transition to alternative farming systems’, J. Prod. Ag. 42, 153–161.Google Scholar
  92. Stanley, T. D. 2001,‘Wheat from chaff: Meta-analysis as quantitative literature review’, J. Econ. Persp. 15, 131–150.CrossRefGoogle Scholar
  93. Thomas, G. W.: 1985, ‘The Future of No-Tillage’, in Hargrove, W. L., Boswell, F. C. and Langdale, G. W. eds., Proceedings of the 1985 Southern Region No-Till Conference, July 16–17, 1985, Griffin, Georgia, Agricultural Experiment Stations, University of Georgia, Athens, Georgia, pp. 242–247.Google Scholar
  94. Torbert, H. A., Potter, K. N. and Morrison, J. E., Jr 1998,‘Tillage intensity and crop residue effects on nitrogen and carbon cycling in a vertisol’, Comm. Soil Sci. Plant Analysis 29, 717–727.CrossRefGoogle Scholar
  95. Uri, N. D. 2001,‘The potential impact of conservation practices in US agriculture on global climate change’, J. Sust. Ag. 181, 109–131.Google Scholar
  96. Wanniarachchi, S. D., Voroney, R. P., Vyn, T. J., Beyaert, R. P. and MacKenzie, A.F. 1999,‘Tillage effects on the dynamics of total and corn-residue-derived soil organic matter in two southern Ontario soils’, Can. J. Soil Sci. 79, 473–480.Google Scholar
  97. Weersink, A., Walker, M., Swanton, C. and Shaw, J. 1992,‘Economic comparison of alternative tillage systems under risk’, Can. J. Agr. Econ. 402, 199–217.CrossRefGoogle Scholar
  98. West, T. O. and Marland, G. 2002,‘A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States’, Agr. Ecosyst. Env. 91, 217–232.Google Scholar
  99. Wiese, A. F., Bean, B. W., Salisbury, C. D., Schoenhals, M. G. and Amosson, S. 1997,‘Economic evaluation of field bindweed Convolvulus arvensis control’, Weed Sci. 452, 288–295.Google Scholar
  100. Wiese, A. F., Harman, W. L., Bean, B. W. and Salisbury, C. D. 1994,‘Effectiveness and economics of dryland conservation tillage systems in the southern Great Plains“, Agron. J. 864, 725–730.CrossRefGoogle Scholar
  101. Wiese, A. F., Marek, T. and Harman, W. L. 1998,‘No-tillage increases profit in a limited irrigation-dryland system’, J. Prod. Ag. 112, 247–252.Google Scholar
  102. Williams, J. R., Llewelyn, R. V. and Barnaby, G. A. 1990,‘Risk analysis of tillage alternatives with government programs’, Amer. J. Agr. Econ. 721, 172–181.Google Scholar
  103. Yang, X. M. and Kay, B. D. 2001,‘Impacts of tillage practices on total, loose- and occluded-particulate, and humified organic carbon fractions in soils within a field in southern Ontario’, Can. J. Soil Sci. 812, 149–156.Google Scholar
  104. Yang, X. M. and Wander, M. M. 1999,‘Tillage effects on soil organic carbon distribution and storage in a silt loam soil in Illinois’, Soil Till. Res. 521/2, 1–9.Google Scholar
  105. Yiridoe, E. K., Weersink, A., Roy, R. C. and Swanton, C. J. 1993,‘Economic analysis of alternative cropping systems for a bean/wheat rotation on light-textured soils’, Can. J. Plant Sci. 732, 405–415.Google Scholar
  106. Young, D. L., Hinman, H. R. and Schillinger, W. F. 2001,‘Economics of winter wheat–summer fallow vs. continuous no-till spring wheat in the Horse Heaven Hills, Washington’, Farm Business Management Reports, EB 1907, Washington State University Cooperative Extension.Google Scholar
  107. Zantinge, A. W., Stonehouse, D. P. and Ketcheson, J. W. 1986,‘Resource requirements, yields and profits for monocultural corn with alternative tillage systems in southern canada’, Soil Till. Res. 8, 201–209.Google Scholar
  108. Zentner, R. P., McConkey, B. G., Campbell, C. A., Dyck, F. B. and Selles, F. 1996,‘Economics of conservation tillage in the semiarid Prairie’, Can. J. Plant Sci. 764, 697–705.Google Scholar
  109. Zentner, R. P., Tessier, S., Peru, M., Dyck, F.B. and Campbell, C. A. 1991,‘Economics of tillage systems for spring wheat production in southwestern Saskatchewan’, Soil Till. Res. 21, 225–242.Google Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • James Manley
    • 1
  • G. Cornelis van Kooten
    • 2
  • Klaus Moeltner
    • 3
  • Dale W. Johnson
    • 4
  1. 1.Department of Agricultural and Resource EconomicsUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.Department of EconomicsUniversity of VictoriaVictoriaCanada
  3. 3.Department of Resource EconomicsUniversity of NevadaRenoU.S.A.
  4. 4.Department of Environmental and Resource SciencesUniversity of NevadaRenoU.S.A.

Personalised recommendations