Advertisement

Climatic Change

, Volume 72, Issue 1–2, pp 123–150 | Cite as

Detection of Variations in Air Temperature at Different Time Scales During the Period 1889–1998 at Firenze, Italy

  • P. Vijaya KumarEmail author
  • Marco Bindi
  • Alfonso Crisci
  • Giampiero Maracchi
Article

Abstract

In an attempt to contribute to studies on global climatic change, 110 years of temperature data for Firenze, Italy, were analysed. Means and trends of annual and monthly temperatures (minimum, maximum and average) were analysed at three different time scales: short (20 years), medium (36–38 years) and long (55 years). Comparative changes in extreme events viz. frosts in the first and second parts of the 20th century were also analysed. At short time scales, climatic change was found in minimum and average temperatures but not in maximum temperatures. At all three time scales, the annual means of minimum, maximum and average temperatures were significantly warmer in the last part than in the early part of the 20th century. The monthly mean temperatures showed significant warming of winter months. Over the last four decades, minimum, maximum and average temperatures had warmed by 0.4, 0.43 and 0.4 ∘C per decade, respectively, and if this trend continues, they will be warmer by 4 ∘C by the end of the 21st century. The significant decline in days with subzero temperatures and frosts in the last half of the 20th century, further substantiated the occurrence of climate change at this site.

Keywords

Climatic Change 20th Century 21st Century Temperature Data Extreme Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandersson, H.: 1986, ‘A homogeneity test applied to precipitation data’, Int. J. Climate 6, 661–675.Google Scholar
  2. Alexandersson, H. and Moberg, A.: 1997, ‘Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends’, Int. J. Climate 17, 25–34.CrossRefGoogle Scholar
  3. Baker, C. B., Quayle, R. G., and Wanlin, W.: 1995, ‘The influence of night time cloud cover on the observed minimum temperature in China’, Atmos. Res. 37(1–3), 27–35.CrossRefGoogle Scholar
  4. Barnett, T. P.: 1978, ‘Estimating variability of surface air temperature in the Northern Hemisphere’, Mon. Wea. Rev. 106, 1353–1367.CrossRefGoogle Scholar
  5. Brazdil, R., Budiková, M., Fasçko, P., and Lapin, M.: 1995, ‘Fluctuation of maximum and minimum air temperatures in the Czech and Slovak Republics’, Atmos. Res. 37(1–3), 53–65.CrossRefGoogle Scholar
  6. Budyko, M. I.: 1969, ‘The effect of solar radiation variations on the climate of the earth', Tellus 21, 611–619.Google Scholar
  7. Budyko, M. I.: 1977, ‘On present day climatic changes’, Tellus 29, 193–204.Google Scholar
  8. Chatfield, C.: 1980, The Analysis of Time Series: An Introduction, Chapman and Hall, New York, 230 pp.Google Scholar
  9. Colacino, M. and Rovelli, A.: 1983, ‘The yearly averaged air temperature in Rome from 1782 to 1975’, Tellus 35A, 389–397.Google Scholar
  10. Dalezios, N. R., Loukas, A., and Vasiliades, L.: 2000, ‘Partial frost severity-duration-frequency analysis’, in 3rd European Conference on Applied Climatology –Tools for the Environment and Man of the Year 2000, October 16–20, 2000, Pisa, Italy, p. 67 (Abstracts).Google Scholar
  11. Dessens, J. and Bucher, A.: 1995, ‘Changes in minimum and maximum temperatures at the Pic du Midi in relation with humidity and cloudiness’, Atmos. Res. 37(1–3), 147–162.CrossRefGoogle Scholar
  12. Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and Russell, G.: 1981, ‘Climate impact of increasing atmospheric carbon dioxide’, Science 213, 957–966.Google Scholar
  13. Heino, R., Brazdil, R., Forland, E., Tuomenvirta, H., Alexandersson, H., Beniston, M., Pfister, C., Rebetez, M., Rosenhagen, G., Rosner, S., and Wibig, J.: 1999, ‘Progress in the study of climatic extremes in northern and central Europe’, Clim. Change 42, 151–181.CrossRefGoogle Scholar
  14. Horton, B.: 1995, ‘Geographical distribution of changes in maximum and minimum temperatures', Atmos. Res. 37(1–3), 101–117.CrossRefGoogle Scholar
  15. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K.: 1996, Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, UK, 572 pp.Google Scholar
  16. Jones, P. D., Wigley, T. M. L., and Kelly, P. M.: 1982, ‘Variations in surface air temperatures: Part 1. Northern hemisphere, 1881–1980', Mon. Wea. Rev. 110(2), 60–69.Google Scholar
  17. Jones, P. D., Wigley, T. M. L., and Briffa, K. R.: 1994, ‘Global and hemispheric temperature anomalies: Land and marine instrumental records’, in Boden, T. A., Kaiser, D. P., Sepanski, R. J. and Stoss, F. W (eds.), Trends 93: A Compendium of Data on Global Change, Carbon Dioxide Analysis Centre, Oak Ridge National Laboratory, Oak Ridge, Tennessee, pp. 603–608.Google Scholar
  18. Jones, P. D.: 1995, ‘Maximum and minimum temperature trends in Ireland, Italy, Thailand, Turkey and Bangladesh, Atmos. Res. 37(1–3), 67–78.CrossRefGoogle Scholar
  19. Jones, P. D., Parker, D. E., Osborn, T. J., and Briffa, K. R.: 1999, ‘Global and hemispheric temperature anomalies: Land and marine instrumental records’, in Boden, T. A., Kaiser, D. P., Sepanski, R. J. and Stoss, F. W (eds.), Trends 93: A Compendium of Data on Global Change, Carbon Dioxide Analysis Centre, Oak Ridge National Laboratory, Oak Ridge, Tennessee (http://cdiac.esd.ornl.gov/trends/temp/jonescru/jones.html).
  20. Jones, R. G., Murphy, J. M., Noguer, M., and Keen, M.: 1997, ‘Simulation of climate change over Europe using a nested regional climate model. I: Comparison of driving and regional model responses to doubling of carbon dioxide’, Quart. J. R. Met. Soc. 123, 265–292.CrossRefGoogle Scholar
  21. Karl, T. R., Diaz, H. F., and Kukla, G.: 1988, ‘Urbanization: Its detection and effect in the United States climate record’, J. Climate 1, 1099–1123.CrossRefGoogle Scholar
  22. Karl, T. R. and Easterling, D. R.: 1999, ‘Climate extremes: Selected review and future research directions’, Clim. Change 42, 309–325.CrossRefGoogle Scholar
  23. Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummer, N., Razuvaev, V., Gallo, K. P., Lindseay, J., Charlson, R. J., and Peterson, T. C.: 1993, ‘Asymmetric trends of daily maximum and minimum temperature’, Bull. Am. Meteor. Soc. 74, 1007–1023$.$CrossRefGoogle Scholar
  24. Karl, T. R., Knight, R. W., Easterling, D. R., and Quayle, R. G.: 1996, ‘Indices of climatic change for the USA’, Bull. Am. Meteor. Soc. 77, 279–292.CrossRefGoogle Scholar
  25. Karl, T. R., Kukla, G., Razuvaev, V., Changery, M., Quayle, R., Heim, Jr., R., Easterling, D., and Fu, C.: 1991, ‘Global warming: Evidence for asymmetric diurnal temperature change’, Geophys. Res. Lett. 18, 2253–2256.Google Scholar
  26. Katz, R. W. and Brown, B. G.: 1992, ‘Extreme events in a changing climate: Variability is more important than averages’, Clim. Change 21, 289–302.CrossRefGoogle Scholar
  27. Mearns, L. O., Katz, R. W., and Schneider, S. H.: 1984, ‘Extreme high temperature events: Changes in their probabilities with changes in mean temperature’, J. Clim. Appl. Meteor. 23, 1601–1613.CrossRefGoogle Scholar
  28. Mearns, L. O.: 2000, ‘Climatic change and variability’, in Reddy, K. R and Hodges, H. F. (eds.), Climate Change and Global Productivity, CAB international, UK, pp. 7–35.Google Scholar
  29. Mitchell, J. M. Jr.: 1953, ‘On the causes of instrumentally observed secular temperature trends’, J. Meteor. 10, 244–261.Google Scholar
  30. Mitchell, J. M.: 1961, ‘Recent secular changes of global temperature’, Ann. N. Y. Acad. Sci. 95, 235–250.Google Scholar
  31. Mitchell, J. M.: 1963, ‘On the world wide pattern of secular temperature change’, in Proceedings of UNESCO Arid zone Research Series, Vol. 20, UNESCO, Paris, pp. 161–181.Google Scholar
  32. Muller, R. A., Faiers, G. E., Grymes, J. M., and Keim, B. D.: 1995, ‘One hundred years of climatic variability and change? Evidence from the subtropical climate region of Louisiana’, in Proceedings of Conference on Climatic Dynamics and the Global Change Perspective, October 17–20, 1995, Cracow, Poland.Google Scholar
  33. Nicholls, N., Gruza, G. V., Jouzel, J., Karl, T. R., Ogallo, L. A., and Parker, D. E.: 1996, ‘Observed climate variability and change’, in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K. (eds.), Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, UK, pp. 133–192.Google Scholar
  34. Plummer, N., Lin, Z., and Torok, S.: 1995, ‘Trends in the diurnal temperature range over Australia since 1951’, Atmos. Res. 37(1–3), 79–86.CrossRefGoogle Scholar
  35. Plummer, N., Salinger, M. J., Nicholls, N., Suppiah, R., Hennessy, K. J., Leighton, R. M., Trewin, B., Page, C. M., and Lough, J. M.: 1999, ‘Changes in climatic extremes over the Australian region and New Zealand during the twentieth century’, Clim. Change 42, 183–202.CrossRefGoogle Scholar
  36. Price, C., Michaeldis, S., Pashiardis, S., and Alpert, P.: 1999, ‘Long term changes in diurnal temperature range in Cyprus’, Atmos. Res. 51(2), 85–98.CrossRefGoogle Scholar
  37. Rahmstorf, S. and Ganopolski, A.: 1999, ‘ Long-term global warming scenarios computed with an efficient coupled climate model’, Clim. Change 43, 353–367.CrossRefGoogle Scholar
  38. Razuvaev, V. N., Apasova, E. G., Bulygina, O. N., and. Martuganov, R. A.: 1995, ‘Variations in the diurnal temperature range in the European region of the former USSR during the cold season’, Atmos. Res. 37(1–3), 45–51.CrossRefGoogle Scholar
  39. Repapis, C. C. and Philandras, C. M.: 1988, ‘A note on the air temperature trends of the last 100 years as evidenced in the eastern Mediterranean time series’, Theor. Appl. Climatol. 39, 93–97.CrossRefGoogle Scholar
  40. Rupa Kumar, K. and Hingane, L. S.: 1988, ‘Long-term variations of surface air temperature at major industrial cities of India’, Clim. Change 13, 287–307.CrossRefGoogle Scholar
  41. Stern, D. I. and Kaufmann, R. K.: 2000, ‘Detecting a global warming signal in Hemispheric Temperature series: A structural time series analysis’, Clim. Change 47(4), 411–438.CrossRefGoogle Scholar
  42. Torok, S. and Nicholls, N.: 1996, ‘A historical annual temperature data set for Australia’, Aust. Met. Mag. 45, 251–260.Google Scholar
  43. Willet, H. C.: 1950, ‘Temperature trends in the past century’, Cent. Proc. R. Meteor. Soc. 195–206.Google Scholar
  44. Wilson, C. A. and Mitchell, J. F. B.: 1987, ‘Simulated climate and CO2-induced climate change over western Europe’, Clim. Change 10, 11–42.CrossRefGoogle Scholar
  45. W.M.O: 1966, Climatic Change, Technical Note 79, W.M.O, Geneva, Switzerland, pp. 1–79.Google Scholar
  46. World Resources, 1994: World Resources 1994–1995, Oxford University Press, New York, p. 201.Google Scholar
  47. Yamamoto, R. and Hoshiai, M.: 1980, ‘Fluctuations of the northern hemisphere mean surface air temperature during recent 100 years, estimated by optimum interpolation’, J. Met. Soc. Jpn. 58(3), 187–193.Google Scholar
  48. Yan, Z., Jones, P. D., Davies, T. D., Moberg, A., Bergstorm, H., Camuffo, D., Cocheo, C., Maugeri, M., Demaree, G. R., Verhoeve, T., Thoen, E., Barriendos, M., Rodriguez, R., Martin-Vide, and Yang, C.: 2002, ‘Trends of extreme temperature in Europe and China based on daily observations’,Clim. Change 53, 355–392.CrossRefGoogle Scholar
  49. Ye, H., Kalkstein, L. S., and Greene, J. S.: 1995, ‘The detection of climate change in the Arctic: An updated report’, Atmos. Res. 37(1–3), 163–173.CrossRefGoogle Scholar
  50. Zhai, P., Sun, A., Ren, F., Liu, X., Gao, B., and Zhang, Q.: 1999, ‘Changes of climatic extremes in China’, Clim. Change 42, 203–218.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • P. Vijaya Kumar
    • 1
    Email author
  • Marco Bindi
    • 2
  • Alfonso Crisci
    • 3
  • Giampiero Maracchi
    • 4
  1. 1.Central Research Institute for Dryland AgricultureHyderabadIndia
  2. 2.DISAT-UNIFIItaly
  3. 3.LaMMA-Laboratorio per la MeteorologiaClimatologia e la Modellistica AmbientaleCampi BisenzioItaly
  4. 4.IATA-CNRFirenzeItaly

Personalised recommendations