Climatic Change

, Volume 72, Issue 1–2, pp 17–36 | Cite as

Detection Time for Plausible Changes in Annual Precipitation, Evapotranspiration, and Streamflow in Three Mississippi River Sub-Basins

  • Alan D. Ziegler
  • Edwin P. Maurer
  • Justin Sheffield
  • Bart Nijssen
  • Eric F. Wood
  • Dennis P. Lettenmaier


We use diagnostic studies of off-line variable infiltration capacity (VIC) model simulations of terrestrial water budgets and 21st-century climate change simulations using the parallel climate model (PCM) to estimate the time required to detect predicted changes in annual precipitation (P), evapotranspiration (E), and discharge (Q) in three sub-basins of the Mississippi River Basin. Time series lengths on the order of 50–350 years are required to detect plausible P, E, and Q trends in the Missouri, Ohio, and Upper Mississippi River basins. Approximately 80–160, 50, and 140–350 years, respectively, are needed to detect the predicted P, E, and Q trends with a high degree of statistical confidence. These detection time estimates are based on conservative statistical criteria (α = 0.05 and β = 0.10) associated with low probability of both detecting a trend when it is not occurring (Type I error) and not detecting a trend when it is occurring (Type II error). The long detection times suggest that global-warming-induced changes in annual basin-wide hydro-climatic variables that may already be occurring in the three basins probably cannot yet be detected at this level of confidence. Furthermore, changes for some variables that may occur within the 21st century might not be detectable for many decades or until the following century – this may or may not be the case for individual recording station data. The long detection times for streamflow result from comparatively low signal-to-noise ratios in the annual time series. Finally, initial estimates suggest that faster detection of acceleration in the hydrological cycle may be possible using seasonal time series of appropriate hydro-climatic variables, rather than annual time series.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdulla, F. A., Lettenmaier, D. P., Wood, E. F., and Smith, J. A.: 1996, ‘Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red River Basin’, J. Geophys. Res. 101, 7449–7459.CrossRefGoogle Scholar
  2. Arora, V. K. and Boer, G. J.: 2001, ‘Effects of simulated climate change on the hydrology of major river basins’, J. Geophys. Res. 106(D4), 3335–3348.CrossRefGoogle Scholar
  3. Brutsaert, W. and Parlange, M. B.: 1998, ‘Hydrologic cycle explains the evaporation paradox’, Nature 396, 30.CrossRefGoogle Scholar
  4. Cherkauer, K. A. and Lettenmaier, D. P.: 1999, ‘Hydrologic effects of frozen soils in the upper Mississippi River basin’, J. Geophys. Res. 104(D16), 19,599–19,610.Google Scholar
  5. Daly, C., Neilson, R. P., and Phillips, D. L.: 1994, ‘A statistical-topographic model for mapping climatological precipitation over mountainous terrain’, J. Appl. Meteorol. 33, 140–158.CrossRefGoogle Scholar
  6. Daly, C., Taylor, G. H., and Gibson, W. P.: 1997, ‘The PRISM approach to mapping precipitation and temperature’, Reprints: 10th Conference on Applied Climatology, Reno, NV, American Meteorological Society, pp. 10–12.Google Scholar
  7. Evans, J. and Schreider, S.: 2002, ‘Hydrological impacts of climate change on inflows to Perth, Australia’, Clim. Change 55(3), 361–393.CrossRefGoogle Scholar
  8. Gleick, P. H.: 1989, ‘Climate change, hydrology, and water resources’, Rev. Geophys. 27, 329–344.Google Scholar
  9. Golubev, V. S., Lawrimore, J. H., Groisman, P. Y., Speranskaya, N. A., Zhuravin, S. A., Menne, M.~J., Peterson, T. C., and Malone, R. W.: 2001, ‘Evaporation changes over the contiguous United States and the former USSR: A reassessment’, Geophys. Res. Lett. 28(13), 2665–2668.CrossRefGoogle Scholar
  10. Goolsby, D. A., Battaglin, W. A., and Hooper, R. P.: 1997, ‘Sources and transport of nitrogen in the Mississippi River Basin’, (downloaded January 2003).
  11. Evans, J. and Schreider, S.: 2002, ‘Hydrological impacts of climate change on inflows to Perth, Australia’, Clim. Change 55(3), 361–393.CrossRefGoogle Scholar
  12. Hansen, M. C., DeFries, R. S., Townshend, J. R. G., and Sohlberg, R.: 2000, ‘Global land cover classification at 1 km spatial resolution using a classification tree approach’, Int. J. Remote Sens. 21(6), 1331–1464.CrossRefGoogle Scholar
  13. Helsel, D. R. and Hirsch, R. M.: 1992, Statistical Methods in Water Resources, Elsevier, Amsterdam, 522 p.Google Scholar
  14. Hisdal, H., Stahl, K., Tallaksen, L. M., and Demuth, S.: 2001, ‘Have streamflow droughts in Europe become more severe or frequent?' Int. J. Climatol. 21, 317–333.CrossRefGoogle Scholar
  15. IPCC: 2001a, ‘Climate change 2001: Impacts, adaptation & vulnerability’, in McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., and White, K. S. (eds.), Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, 1032 p.Google Scholar
  16. IPCC: 2001b, ‘Climate change 2001: The scientific basis’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, 881 p.Google Scholar
  17. Karl, T. R.: 1998, ‘Regional trends and variations of temperature and precipitation’, in Watson, R. T., et~al. (eds.), The Regional Impacts of Climate Change, as Assessment of Vulnerability, Cambridge University Press, pp. 411–425.Google Scholar
  18. Karl, T. R. and Knight, R. W.: 1998, ‘Secular trends of precipitation amount, frequency, and intensity in the United States’, Bull. Am. Meteorol. Soc. 79(2), 231–241.CrossRefGoogle Scholar
  19. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., et~al.: 1996, ‘The NCEP/NCAR 40-year reanalysis project’, Bull. Am. Meteorol. Soc. 77, 437–471.CrossRefGoogle Scholar
  20. Kendall, M. G.: 1975, Rank Correlation Methods, Charles Griffin, London, 202 p.Google Scholar
  21. Lawrimore, J. H. and Peterson, T. C.: 2000, ‘Pan evaporation trends in dry and humid regions of the United States’, J. Hydrometeorol. 1, 543–546.CrossRefGoogle Scholar
  22. Lettenmaier, D. P.: 1975, ‘Detection of trends in water quality data from records with dependent observations’, Water Resour. Res. 12(5), 1037–1046.Google Scholar
  23. Lettenmaier, D. P., Wood, E. F., and Wallis, J. R.: 1994, ‘Hydro-climatological trends in the continental United States, 1948–88’, J. Clim. 7, 586–607.CrossRefGoogle Scholar
  24. Liang, X., Lettenmaier, D. P., and Wood, E. F.: 1996, ‘One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model’, J. Geophys. Res. 101, 21,403–21,422.CrossRefGoogle Scholar
  25. Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: 1994, ‘A simple hydrologically based model of land surface water and energy fluxes for general circulation models’, J. Geophys. Res. 99, 14,415–14,428.Google Scholar
  26. Lins, H. F. and Slack, J. R.: 1999, ‘Streamflow trends in the United States’, Geophys. Res. Lett. 26(2), 227–230.CrossRefGoogle Scholar
  27. Mann, H. B.: 1945, ‘Nonparametric test against trend’, Econometrica 13, 245–259.Google Scholar
  28. Maurer, E. P., O'Donnell, G. M., Lettenmaier, D. P., and Roads, J. O.: 2001, ‘Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model’, J. Geophys. Res. 106(D16), 17,841–17,862.Google Scholar
  29. Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.: 2002, ‘A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States’, J. Clim. 15(22), 3237–3251.CrossRefGoogle Scholar
  30. McCabe, G. J. Jr. and Wolock, D. M.: 1997, ‘Climate change and the detection of trends in annual runoff’, Clim. Res. 8, 129–134.Google Scholar
  31. Meade, R. H.: 1995, ‘Contaminants in the Mississippi River’, USGS Circular 1133, 140 p.Google Scholar
  32. Miller, D. A. and White, R. A.: 1998, ‘A conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling’, Earth Interactions 2, 1–15.CrossRefGoogle Scholar
  33. Milly, P. C. D. and Dunne, K. A.: 2001, ‘Trends in evapotranspiration and surface cooling in the Mississippi River Basin’, Geophys. Res. Lett. 28(7), 1219–1222.CrossRefGoogle Scholar
  34. Mitosek, H. T.: 1995, ‘Climate variability and change within the discharge time series: A statistical approach’, Clim. Change 29, 101–116.CrossRefGoogle Scholar
  35. Morel, P.: 2001, ‘Why GEWEX? The agenda for a global energy and water cycle research program’, in Twitchell, P. (ed.), GEWEX NEWS 11(1), 1,7–11, International GEWEX Project Office, 1010 Wayne Avenue 450, Silver Spring, MA, USA.Google Scholar
  36. Myneni, R. B., Nemani, R. R., and Running, S. W.: 1997, ‘Estimation of global leaf area index and absorbed PAR using radiative transfer models’, IEEE Trans. Geosci. Remote Sens. 35(6), 1380–1393.CrossRefGoogle Scholar
  37. Nijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W., and Wood, E. F.: 1997, ‘Streamflow simulation for continental-scale river basins’, Water Resour. Res. 33, 711–724.CrossRefGoogle Scholar
  38. Nijssen, B., O'Donnell, G. M., Hamlet, A. F., and Lettenmaier, D. P.: 2001, ‘Hydrologic sensitivity of global rivers to climate change’, Clim. Change 50(1–2), 143–175.CrossRefGoogle Scholar
  39. Olsen, J. R., Stedinger, J. R., Matalas, N. C., and Stakhiv, E. Z.: 1999, ‘Climate variability and flood frequency estimation for the Upper Mississippi and Lower Mississippi Rivers’, J. Am. Water Resour. Assoc. 35(6), 1509–1523.Google Scholar
  40. Peterson, T. C., Golubev, V. S., and Groisman, P. Y.: 1995, ‘Evaporation losing its strength’, Nature 377, 687–688.CrossRefGoogle Scholar
  41. Rawls, W. J., Ahuja, L. R., Brakensiek, D. L., and Shirmohammadi, A.: 1993, ‘Infiltration and soil water movement’, in Maidment, D. (ed.), Handbook of Hydrology, pp. 5.1–5.51.Google Scholar
  42. Shepard, D. S.: 1984, ‘Computer mapping: The SYMAP interpolation algorithm’, in Gaile, G. L. and Willmott, C. J. (eds.), Spatial Statistics and Models, D. Reidel Publishing Co., pp. 133–145.Google Scholar
  43. Solley, W. B., Pierce, R. R., and Perlman, H. A.: 1998, ‘Estimated use of water in the United States in 1995’, USGS Circular 1200.Google Scholar
  44. Theil, H.: 1950, ‘A rank-invariant method of linear and polynomial regression analysis’, Indagationes Math. 12, 85–91.Google Scholar
  45. USACE: 2003, United States Army Corps of Engineers, download date: January, 2003, http://www.
  46. USGS: 2003, United States Geological Survey,, download date: January, 2003.
  47. Washington, W. M., Weatherly, J. W., Meehl, G. A., Semtner, A. J., Jr., Bettge, T. W., Craig, A. P., Strand, W. G. Jr., Arblaster, J., Wayland, V. B., James, R., and Zhang, Y.: 2000, ‘Parallel climate model (PCM) control and transient simulations’, Clim. Dynam. 16(10/11), 755–774.CrossRefGoogle Scholar
  48. Widmann, M. and Bretherton, C. S.: 2000, ‘Validation of mesoscale precipitation in the NCEP reanalysis using a new grid-cell data set for the northwestern United States’, J. Clim. 13, 1936–1950.CrossRefGoogle Scholar
  49. Wigley, T. M. L. and Jones, P. D.: 1985, ‘Influences of precipitation changes and direct CO2 effects on streamflow’, Nature 314, 149–152.CrossRefGoogle Scholar
  50. Wood, A. W., Maurer, E. P., Kumar, A., and Lettenmaier, D. P.: 2002, ‘Long range experimental hydrologic forecasting for the eastern U.S’, J. Geophys. Res., 107(D20), 4429 (doi:10.1029/2001JD000659).Google Scholar
  51. Wood, E. F., Lettenmaier, D. P., Liang, X., Nijssen, B., and Wetzel, S. W.: 1997, ‘Hydrological modeling of continental-scale basins’, Annu. Rev. Earth Planet. Sci. 25, 279–300.CrossRefGoogle Scholar
  52. Ziegler, A. D., Sheffield, J., Maurer, E. P., Nijssen, B., Wood, E. F., and Lettenmaier, D. P.: 2003, ‘Detection of intensification of continental-scale hydrological cycles: Temporal scale of evaluation’, J. Clim. 16(3), 535–547.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Alan D. Ziegler
    • 1
  • Edwin P. Maurer
    • 2
  • Justin Sheffield
    • 1
  • Bart Nijssen
    • 3
  • Eric F. Wood
    • 1
  • Dennis P. Lettenmaier
    • 4
  1. 1.Environmental Engineering & Water ResourcesPrinceton UniversityPrincetonU.S.A.
  2. 2.Department of Civil EngineeringSanta Clara UniversitySanta ClaraU.S.A.
  3. 3.Departments of Civil Engineering & Engineering Mechanics and Department of Hydrology and Water ResourcesUniversity of ArizonaTucsonU.S.A.
  4. 4.Department of Civil EngineeringUniversity of WashingtonSeattleU.S.A.

Personalised recommendations