Advertisement

Climatic Change

, Volume 67, Issue 2–3, pp 379–402 | Cite as

Relating Radar Remote Sensing of Biomass to Modelling of Forest Carbon Budgets

  • Thuy Le ToanEmail author
  • Shaun Quegan
  • Ian Woodward
  • Mark Lomas
  • Nicolas Delbart
  • Ghislain Picard
Article

Abstract

This paper addresses the use of radar remote sensing to map forest above-ground biomass, and discusses the use of biomass maps to test a dynamic vegetation model that identifies carbon sources and sinks and predicts their variation over time. For current radar satellite data, only the biomass of young/sparse forests or regrowth after disturbances can be recovered. An example from central Siberia illustrates that biomass can be measured by radar at a continental scale, and that a significant proportion of the Siberian forests have biomass values less than 50 tonnes/ha. Comparison between the radar map and calculations by the Sheffield Dynamic Global Vegetation Model (SDGVM) indicates that the model considerably overestimates biomass; under-representation of managed areas, disturbed areas and areas of low site quality in the model are suggested reasons for this effect. A case study carried out at the Büdingen plantation forest in Germany supports the argument that inadequate representations of site quality and forest management may cause model overestimates of biomass. Comparison of the calculated biomass of stands planted after 1990 with biomass estimates by radar allows identification of forest stands where the growth conditions assumed by the model are not valid. This allows a quality check on model calculations of carbon fluxes: only calculations for stands where there is good agreement between the data and the model predictions should be accepted. Although the paper only uses the SDGVM model, similar effects are likely in other dynamic vegetation models, and the results show that model calculations attempting to quantify the role of forests as carbon sources or sinks could be qualified and potentially improved by exploiting remotely sensed measurements of biomass.

Keywords

Biomass Radar Remote Sensing Forest Carbon Site Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achard, F., Eva, H. D., Stibig., H. J., Mayaux, P., Gallego, J., Richards T. and Malingreau, J. P.: 2002, ‘Determination of deforestation rates of the world’s humid tropical forests’, Science 297, 999–1002.CrossRefPubMedGoogle Scholar
  2. Alves, D. S., Soares, J. V., Amaral, S., Mello, E., Almeida, S., Da Silva, O. F., Silveira, A.: 1997, ‘Biomass of primary and secondary vegetation in Rondonia, Western Brazilian Amazon’, Global Change Biol. 3, 451–461.Google Scholar
  3. Amiro, B. D.: 2001, ‘Paired-tower measurements of carbon and energy fluxes following disturbance in the boreal forest’, Global Change Biol. 7, 253–268.Google Scholar
  4. Askne, J., Dammert, P., Ulander, L. and Smith, G.: 1997, ‘C-band repeat pass interferometric SAR observations of forests’, IEEE Trans. Geosci. Remote Sensing 35, 25–35.Google Scholar
  5. Balzter, H., Talmon, E., Wagner, W., Gaveau, D., Plummer, S., Yu, J. J., Quegan, S., Davidson, M., Le Toan, T., Gluck, M., Shvidenko, A., Nilsson, S., Tansey, K., Luckman, A. and Schmullius, C.: 2002, ‘Accuracy assessment of a large-scale forest cover map of Central Siberia from Synthetic Aperture Radar’, Can. J. Remote Sensing 28, 719–737.Google Scholar
  6. Beaudoin, A., Le Toan, T., Goze, S., Nezry, E., Lopes, A., Mougin, E., Hsu, C. C., Han, H. C., Kong, J. A. and Shin, R. T.: 1994, ‘Retrieval of forest biomass from SAR data’, Int. J. Remote Sensing 15, 2777–2796.Google Scholar
  7. Cihlar, J. and Denning, S. (eds.): 2002, Terrestrial Carbon Observation: The Rio de Janeiro Recommendations for Terrestrial and Atmospheric Measurements, FAO.Google Scholar
  8. Cihlar, J, Denning, S. and Gosz, J. (eds.): 2002, Terrestrial Carbon Observation: The Ottawa Assessment of Requirements, Status and Next Steps, FAO.Google Scholar
  9. Cohen, J.: 1960, ‘A coefficient of agreement for nominal scales’, Educ. Psychol. Meas. 20, 27–46.Google Scholar
  10. Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A. and Young-Molling, C.: 2001, ‘Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models’, Global Change Biol. 7, 357–373.Google Scholar
  11. Dobson, M. C., Ulaby, F. T., Le Toan, T., Beaudoin, A., Kasischke, E. and Christensen, N. L.: 1992, ‘Dependence of radar backscatter on coniferous forest biomass’, IEEE Trans. Geosci. Remote Sensing 30, 412–415.Google Scholar
  12. Hansen, M. C., DeFries, R. S., Townshend, J. R. G. and Sohlberg, R.: 2000, ‘Global land cover classification at 1 km spatial resolution using a classification tree approach’, Int. J. Remote Sensing 21, 1331–1364.Google Scholar
  13. GOFC Design Team: 1999, A Strategy for Global Observation of Forest Cover. Google Scholar
  14. Hoekman, D. H. and Quinones, M. J.: 2000, ‘Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon’, IEEE Trans. Geosci. Remote Sensing 38, 685–696.Google Scholar
  15. Houghton, R. A., Lawrence, K. T., Hackler, J. L. and Brown, S.: 2001, ‘The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates’, Global Change Biol. 7, 731–746.Google Scholar
  16. IGOS-P Carbon Cycle Observation Theme Report: Terrestrial and Atmospheric Components (draft), Terrestrial Carbon Theme Team, October 2000.Google Scholar
  17. Imhoff, M. L. A.: 1995 ‘Radar backscatter and biomass saturation: Ramifications for global biomass inventory’, IEEE Trans. Geosci. Remote Sensing 33, 511–518.Google Scholar
  18. IPCC Special Report: 2000, Land Use, Land Use Change and Forestry, Cambridge University Press.Google Scholar
  19. Johns, T. C., Carnell, R. E., Crossley, J. F., Gregory, J. M., Mitchell, J. F. B., Senior, C. A., Tett, S. F. B. and Wood, R. A.: 1997, ‘The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation’, Clim. Dyn. 13, 103–134.Google Scholar
  20. Klein Goldewijk, K.: 2001, ‘Estimating historical land use changes over the past 300 years: The HYDE database’, Global Biogeochem. Cycles 15 (2), 417–434.Google Scholar
  21. Kokorin, A. O., Lelyakin, A. L., Nazarov, I. M. and Fillipchuk, A. N.: 1996, ‘Calculation of CO2 net sinks emissions in Russian forests and assessment of mitigation options’, Environ. Manage. 20, S101–S109.Google Scholar
  22. Kurz, W. A. and Apps M. J.: 1999, ‘A 70 year retrospective analysis of carbon fluxes in the Canadian forest sector’, Ecologi. Appl. 9, 526–547.Google Scholar
  23. Law, B. E., Thornton, P. E., Irvine, J., Anthoni, P. M. and Van Tuyl, S.: 2001, ‘Carbon storage and fluxes in ponderosa pine forests at different developmental stages’, Global Change Biol. 7, 755–777.Google Scholar
  24. Le Toan, T.: 2002, BIOMASCA: Biomass Monitoring Mission for Carbon Assessment, A proposal in response to the ESA Second Call for Earth Explorer Opportunity Missions, January 2002. http://esa.int, http://www.cesbio.ups-tlse.fr/
  25. Le Toan, T., Beaudoin, A., Riom, J. and Guyon, D.: 1992, ‘Relating forest biomass to SAR data’, IEEE Trans. Geosci. Remote Sensing 30, 403–411.Google Scholar
  26. Le Toan, T., Picard, G., Martinez, J. M., Melon, P. and Davidson, M.: 2002, ‘On the relationships between radar measurements and forest structure and biomass’, in Proceedings of the 3rd International Symposium: Retrieval of Bio-and Geophysical Parameters from SAR Data for Land Applications, 11–14 September 2001, ESA Pubn. SP-475, pp. 3–12.Google Scholar
  27. Lucht, W., Prentice, I. C., Myneni, R. B., Sitch, S., Friedlingstein, P., Cramer, W., Bousquet, P., Buermann, W. and Smith, B.: 2002, ‘Climate control of the high latitude vegetation greening trend and Pinatubo effect’, Science 296, 1687–1689.CrossRefPubMedGoogle Scholar
  28. Luckman, A., Baker, J., Kuplich, T. M., Yanasse, C. C. F. and Frery, A. C.: 1997, ‘A study of the relationship between radar backscatter and regenerating tropical forest biomass for spaceborne SAR instruments’, Remote Sensing Environ. 60.Google Scholar
  29. Magnussen, S., Eggermont, P. and LaRiccia, V. N.: 1999, ‘Recovering tree heights from airborne laser scanner data’, Forest Sci., 45, 407–422.Google Scholar
  30. Meeson, B. W., Corprew, F. E., McManus, J. M. P. et al. (remaining authors on ISLSCP CDROM): 1995, ISLSCP Initiative—Global Data Sets for Land-Atmosphere Models, 1987–1988, Vols. 1–5, published on CD by NASA.Google Scholar
  31. Melon, P. 2002, L’utilisation des Radars Basses frequences a l’etude des couverts forestiers, These de Doctorat a l’, Université Paul Sabatier, 30 May 2002.Google Scholar
  32. Melon, P., Martinez, J. M., Le Toan, T. and Ulander, L. M. H.: 2001, ‘Analysis of VHF SAR data over pine forest’, IEEE Trans. Geosci. Remote Sensing 39, 2364–2372.Google Scholar
  33. Myneni, R. B, Dong, J., Tucker, C. J., Kaufmann, R. K., Kauppi, P. E., Liski, J., Zhou, L., Alexeyev, V. and Hughes, M. K.: 2001, ‘A large carbon sink in the woody biomass of northern forests’, in Proceedings of the National Academy of Sciences (PNAS), December 18, 2001 P8, pp. 14784–14789, at http://www:pnas
  34. New, M., Hulme, M. and Jones, P.: 2000, ‘Representing twentieth-century space–time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate’, J. Clim. 13, 2217–2238.Google Scholar
  35. Olson, J. S., Watts, J. A. and Allison, L. J.: 1983, Carbon in Live Vegetation of Major World Ecosystems, TR004, U.S. Department of Energy, Washington DC.Google Scholar
  36. Papathanassiou, K., Mette, T., Zimmermann, R. and Cloude, S. R.: 2001, ‘Forest biomass estimation using polarimetric SAR interferometry’, Proc. ASAR’01, Montreal, Canada, 1–4 October 2001.Google Scholar
  37. Quegan, S. and Le Toan, T.: 2002, ‘Embedding remote sensing data in models for forest carbon dynamics’, in Proceedings of the 3rd International Symposium: Retrieval of Bio-and Geophysical Parameters from SAR Data for Land Applications, Sheffield, U.K. 11–14 September 2001. ESA Pubn. SP-475, pp. 215–220.Google Scholar
  38. Quegan, S., Le Toan, T., Yu, J. J., Ribbes, F. and Floury, N.: 2000, ‘Estimating temperate forest area with multitemporal SAR data’, IEEE Trans. Geosci. Remote Sensing 38, 741–753.Google Scholar
  39. Ranson, K. J. and Sun, G.: 1994, ‘Mapping biomass of a northern forest using multifrequency SAR data’, IEEE Trans. Geosci. Remote Sensing 32, 388–396.Google Scholar
  40. Rignot, E. J., Way, J., Williams, C. and Viereck, L.: 1994, ‘Radar estimates of above-ground biomass in boreal forests of interior Alaska’, IEEE Trans. Geosci. Remote Sensing 32, 1117–1124.Google Scholar
  41. Rosenqvist, A.: 2003, ‘Systematic data acquisitions—a prerequisite for meaningful biophysical parameter retrieval?’, IEEE Trans. Geosci. Remote Sensing 41, 1709–1711.Google Scholar
  42. Rugo, O. and Weiss, A.: 1996, ‘Preserving Russia’s carbon sink: Strategies for improving carbon storage through boreal forest protection’, Int. J. Environ. Pollut. 6, 131–141.Google Scholar
  43. Schmullius, C., Baker, J., Balzter, H., Davidson, M., Gaveau, D., Gluck, M., Holz, A., Le Toan, T., Luckman, A., Marschalk, U., Nilsson, S., Quegan, S., Rauste, Y., Roth, A., Rozhkov, V., Sokolov, V., Shvidenko, A., Skuding, V., Strozzi, T., Tansey, K., Vietmeier, J., Voloshuk, L., Wagner, W., Wegmuller, U., Wiesmann, A. and Yu, J. J.: 2001, SIBERIA—SAR Imaging for Boreal Ecology and Radar Interferometry Applications, European Commission 4th Framework Project ENV4-CT98-0743 (DG12-EHKN), Final Report, September 2001.Google Scholar
  44. Schulze, E. D., Lloyd, J. and Kelliher, F. M.: 1999, ‘Productivity of forests in the Euroboreal region and their potential to act as a carbon sink—a synthesis’, Global Change Biol. 5, 703–722.Google Scholar
  45. Schvidenko, A. and Nilsson, S.: 2002, ‘Dynamics of Russian forests and the carbon budget in 1961–1998: An assessment based on long term forest inventory data’, Clim. Change 55, 5–37.Google Scholar
  46. Tomppo, E.: 1997, ‘Application of Remote Sensing in European forest monitoring’, in (Kennedy, P. J. ed.) International Workshop, Vienna, Austria, October 1996. Proceedings published by, JRC ECSC-EC-EAEC, Brussels, 375–388.Google Scholar
  47. Wagner, W., Luckman, A., Vietmeier, J., Tansey, K., Balzter, H., Schmullius, C., Quegan, S., Yu, J. J., Gaveau, D., Davidson, M., Le Toan, T., Gluck, M., Shvidenko, A. and Wiesmann, A.: 2003, ‘Large-scale mapping of boreal forest in SIBERIA using ERS Tandem coherence and JERS backscatter data’, Remote Sensing Environ. 85, 125–144.Google Scholar
  48. Woodward, F. I., Smith, T. M., and Emanuel, W. R.: 1995, ‘A global primary productivity and phytogeography model’, Global Biogeochem Cycles 9, 471–490.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Thuy Le Toan
    • 1
    Email author
  • Shaun Quegan
    • 2
  • Ian Woodward
    • 2
  • Mark Lomas
    • 2
  • Nicolas Delbart
    • 1
  • Ghislain Picard
    • 2
    • 1
  1. 1.Centre d’Etudes Spatiales de la BiosphèreCNES-CNRS-IRD-Université Paul SabatierToulouseFrance
  2. 2.Centre for Terrestrial Carbon Dynamics and Sheffield Centre for Earth Observation ScienceSheffieldU.K.

Personalised recommendations