Climatic Change

, Volume 67, Issue 2–3, pp 437–447 | Cite as

Verification of Carbon Sink Assessment: Can We Exclude Natural Sinks?

  • Georgii AlexandrovEmail author
  • Yoshiki Yamagata


Any human-induced terrestrial sink is susceptible to the effects of elevated atmospheric CO2 concentration, nitrogen deposition, climate variability and other natural or indirect human-induced factors. It has been suggested in climate negotiations that the effects of these factors should be excluded from estimates of carbon sequestration used to meet the emission reduction commitments under the Kyoto Protocol. This paper focuses on the methodologies for factoring out the effects of atmospheric and climate variability/change. We estimate the relative magnitude of the non-human induced effects by using two biosphere models and discuss possibilities for narrowing estimate uncertainty.


Climate Variability Emission Reduction Carbon Sequestration Relative Magnitude Induce Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandrov, G. and Oikawa, T.: 2002, ‘TsuBiMo: A biosphere model of the CO2-fertilization effect’, Climate Res. 19, 265–270Google Scholar
  2. Alexandrov, G. A., Oikawa, T., and Esser, G.: 1999a, ‘Estimating terrestrial NPP: What the data say and how they may be interpreted?’, Ecol. Model. 117, 361–369.Google Scholar
  3. Alexandrov, G. A., Oikawa, T., and Yamagata, Y.: 2002, ‘The scheme for globalization of a process-based model explaining gradations in terrestrial NPP and its application’, Ecol. Model. 148, 293–306.Google Scholar
  4. Alexandrov, G. A., Yamagata, Y., and Oikawa, T.: 1999b, ‘Towards a model for projecting Net Ecosystem Production of the world forests’, Ecol. Model. 123, 183–191.Google Scholar
  5. Bolin, B.: 1998, ‘The Kyoto negotiations on climate change: A science perspective’, Science 279, 330–331.CrossRefGoogle Scholar
  6. Bolin, B.: 2002, ‘Politics and the IPCC’, Science 296, 1235–1235.Google Scholar
  7. Bousquet, P., Peylin, P., Ciais, P., Le Quere, C., Friedlingstein, P., and Tans, P.P.: 2000, ‘Regional changes in carbon dioxide fluxes of land and oceans since 1980’, Science 290, 1342–1346.CrossRefPubMedGoogle Scholar
  8. Brown, S., Swingland, I. R., Hanbury-Tenison, R., Prance, G. T., and Myers, N.: 2002, ‘Changes in the use and management of forests for abating carbon emissions: Issues and challenges under the Kyoto Protocol’, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 360, 1593–1605.Google Scholar
  9. Canadell, J. and Noble, I.: 2000, ‘Changing metabolism of terrestrial ecosystems under global change’, Ecol. Appl. 10, 1551–1552.Google Scholar
  10. Canadell, J. G.: 2002, ‘Land use effects on terrestrial carbon sources and sinks’, Sci.China C Life Sci. 45, 1–9.Google Scholar
  11. Cannell, M. G. R.: 1999, ‘Forests, Kyoto and climate’, Outlook Agric. 28, 171–177.Google Scholar
  12. Esser, G.: 1987, ‘Sensitivity of global carbon pools and fluxes to human and potential climatic impacts’, Tellus B Chem. Phys. Meteorol. 39, 245–260.Google Scholar
  13. Gloor, M., Fan, S. M., Pacala, S., Sarmiento, J., and Ramonet, M.: 1999, ‘A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale’, J. Geophys. Res. Atmos. 104, 14245–14260.Google Scholar
  14. Houghton, R. A.: 1995, ‘Land-use change and the carbon-cycle’, Global Change Biol. 1, 275–287.Google Scholar
  15. Houghton, R. A.: 1996, ‘Terrestrial sources and sinks of carbon inferred from terrestrial data’, Tellus B Chem. Phys. Meteorol. 48, 420–432.Google Scholar
  16. Ito, A. and Oikawa, T.: 2000a, ‘A model analysis of the relationship between climate perturbations and carbon budget anomalies in global terrestrial ecosystems: 1970 to 1997’, Climate Res. 15, 161–183.Google Scholar
  17. Ito, A. and Oikawa, T.: 2000b, ‘The large carbon emission from terrestrial ecosystems in 1998: A model simulation’, J. Meteorol. Soc. Jpn., 78, 103–110.Google Scholar
  18. Kicklighter, D. W., Bruno, M., Donges, S., Esser, G., Heimann, M., Helfrich, J., Ift, F., Joos, F., Kaduk, J., Kohlmaier, G. H., McGuire, A. D., Melillo, J. M., Meyer, R., Moore, B., Nadler, A., Prentice, I. C., Sauf, W., Schloss, A. L., Sitch, S., Wittenberg, U., and Wurth, G.: 1999, ‘A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: A comparison of four terrestrial biosphere models’, Tellus B Chem. Phys. Meteorol. 51, 343–366.Google Scholar
  19. McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: 2001, ‘Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models’, Global Biogeochem. Cycles 15, 183–206.Google Scholar
  20. New, M., Hulme, M., and Jones, P.: 2000, ‘Representing twentieth-century space-time climate variability Part II: Development of 1901–96 monthly grids of terrestrial surface climate’, J. Climate 13, 2217–2238.Google Scholar
  21. Noble, I. and Scholes, R. J.: 2001, ‘Sinks and Kyoto Protocol’, Clim. Policy 1, 5–25.Google Scholar
  22. Pacala, S. W., Hurtt, G. C., Baker, D., Peylin, P., Houghton, R. A., Birdsey, R. A., Heath, L., Sundquist, E. T., Stallard, R. F., Ciais, P., Moorcroft, P., Caspersen, J. P., Shevliakova, E., Moore, B., Kohlmaier, G., Holland, E., Gloor, M., Harmon, M. E., Fan, S. M., Sarmiento, J. L., Goodale, C. L., Schimel, D., and Field, C. B.: 2001, ‘Consistent land- and atmosphere-based US carbon sink estimates’, Science 292, 2316–2320.CrossRefPubMedGoogle Scholar
  23. Rykiel, E. J.: 1996, ‘Testing ecological models: The meaning of validation’, Ecol. Model. 90, 229–244.Google Scholar
  24. Schaefer, K., Denning, A. S., Suits, N., Kaduk, J., Baker, I., Los, S., and Prihodko, L.: 2002, ‘Effect of climate on interannual variability of terrestrial CO2 fluxes’, Global Biogeochem. Cycles 16(4), Art. No. 1102, doi: 10.1029/2002GB001928, 2002.Google Scholar
  25. Shaw, M. R., Zavaleta, E. S., Chiariello, N. R., Cleland, E. E., Mooney, H. A., and Field, C. B.: 2002, ‘Grassland responses to global environmental changes suppressed by elevated CO2’, Science 298, 1987–1990, doi: 10.1126/science.1075312.CrossRefPubMedGoogle Scholar
  26. Schneider, S. H.: 2002, ‘Can we estimate the likelihood of climatic changes at 2100?’, Clim. Change 52, 441–451.Google Scholar
  27. Schulze, E. D., Valentini, R., and Sanz, M. J.: 2002, ‘The long way from Kyoto to Marrakesh: Implications of the Kyoto Protocol negotiations for global ecology’, Global Change Biol. 8, 505–518.Google Scholar
  28. Tans, P. P. and Wallace, D. W. R.: 1999, ‘Carbon cycle research after Kyoto’, Tellus B Chem. Phys. Meteorol. 51 562–571.Google Scholar
  29. Yamagata, Y. and Alexandrov, G. A.: 2001, ‘Would forestation alleviate the burden of emission reduction? An assessment of the future carbon sink from ARD activities’, Clim. Policy 1, 27–40.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.National Institute for Environmental StudiesTsukuba, IbarakiJapan

Personalised recommendations