Climatic Change

, Volume 67, Issue 1, pp 95–117 | Cite as

Simulating growth dynamics in a South-East Asian rainforest threatened by recruitment shortage and tree harvesting

  • Peter Köhler
  • Andreas Huth


There is increasing evidence that the future recruitment in South-East Asian dipterocarp trees species depending on mast-fruiting events might be endangered by climate change or enhanced seed predation in forest fragments. Especially in combination with the ongoing tree harvesting in this region the recruitment threat imposes a severe danger on the species richness and forest structure of the whole area. We here assess with the process-based forest growth model FORMIND2.0 the impacts of common tree-logging strategies in those recruitment endangered forests. FORMIND2.0 is based on the calculations of the carbon balance of individual trees belonging to 13 different plant functional types. Even single logging events in those rainforests threatened by a lack of recruitment led to shifts in the abundances of species, to species loss, and to forest decline and dieback. The results show that current logging practices in South-East Asia seriously overuse the forests especially in the light of changing climate conditions.


Forest Fragment Forest Structure Functional Type Seed Predation Forest Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashton, P. S., Givnish, T. J., and Appanah, S.: 1988, ‘Staggered flowering in the Dipterocarrpaceae: New insights into floral induction and the evolution of mast fruiting in the aseasonal tropics’, Amer. Nat. 132, 44–66.Google Scholar
  2. Benitez-Malvido, J.: 1998, ‘Impact of forest fragmentation on seedling abundance in a tropical rainforest’, Conservation Biol. 12, 380–389.Google Scholar
  3. Bertault, J. G. and Sist, P.: 1997, ‘An experimental comparison of different harvesting intensities with reduced-impact and conventional logging in East Kalimantan Indonesia’, Forest Ecol. Manage. 94, 209–218.Google Scholar
  4. Bierregaard, R. O., Lovejoy, T. E., Kapos, V., dos Santos, A. A., and Hutchings, R. W.: 1992, ‘The biological dynamics of tropical rainforest fragments’, BioScience 42, 859–866.Google Scholar
  5. Boot, R. G. A. and Gullison, R. E.: 1995, ‘Approaches to developing sustainable extraction systems for tropical forest products’, Ecol. Appl. 5, 894–903.Google Scholar
  6. Boscolo, M., Buongiorno, J., and Panayotou, T.: 1997, ‘Simulating options for carbon sequestration through improved management of a lowland tropical rainforest’, Environ. Dev. Econ. 2, 241–263.Google Scholar
  7. Botkin, D. B.: 1993, An Ecological Model, Oxford University Press, Oxford.Google Scholar
  8. Bruijnzeel, L. A.: 1991, ‘Nutrient input–output budgets of tropoical forest ecosystems: A review’, J. Trop. Ecol. 7, 1–24.Google Scholar
  9. Bruijnzeel, L. A.: 1992, ‘Managing tropical watersheds for production: Where contradictory theory and practice co-exist,’ in Miller, F. R. and Adam, K. L. (eds.), Wise Management of Tropical Forests, Oxford Forestry Institute, Oxford, pp. 37–75.Google Scholar
  10. Bugmann, H., Reynolds, J. F., and Pitelka, L. F.: 2001, ‘Special issue: How much physiology is needed in forest gap models simulating long-term vegetation response to global change?’, Climatic Change 51, 249–557.Google Scholar
  11. Burgess, P. F.: 1966, Timbers of Sabah, No. 6 in Sabah Forest Record, Sabah Forestry Department, Sandakan, Sabah, Malaysia.Google Scholar
  12. Cannon, C. H., Peart, D. R., Leighton, M., and Kartawinata, K.: 1994, ‘The structure of lowland rainforest after selective logging in West Kalimantan Indonesia’, Forest Ecol. Manage. 67, 49–68.Google Scholar
  13. Chave, J.: 1999, ‘Study of structural, successional and spatial pattern in tropical rainforests using TROLL, a spatially explicit forest model’, Ecol. Modell. 124, 233–254.Google Scholar
  14. Chave, J.: 2001, ‘Spatial patterns and persistence of woody plant species in ecological comunities’, Amer. Nat. 157, 51–65.Google Scholar
  15. Clark, D. A. and Clark, D. B.: 1999, ‘Assessing the growth of tropical rain forest trees: Issues for forest modeling and management’, Ecol. Appl. 3, 981–997.Google Scholar
  16. Clark, J. S., Silman, M., Kern, R., Macklin, E., and HilleRisLambers, J.: 1999, ‘Seed dispersal near and far: Pattern across temperate and tropical forests’, Ecology 80, 1475–1494.Google Scholar
  17. Cockburn, P. F.: 1980, Trees of Sabah I and II, Sabah Forest Record No. 10, Sabah Forestry Department, Sandakan, Sabah, Malaysia.Google Scholar
  18. Condit, R., Hubbell, S. P., and Foster, R. B.: 1992, ‘Short-term dynamics of a neotropical forest change with limits’, BioScience 42, 822–828.Google Scholar
  19. Condit, R., Hubbell, S. P., and Foster, R. B.: 1995a, ‘Demography and harvest potential of Latin American timber species: Data from a large permanent plot in Panama’, J. Trop. Forest Sci. 7, 599–622.Google Scholar
  20. Condit, R., Hubbell, S. P., and Foster, R. B.: 1995b, ‘Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought’, Ecol. Monogr. 65, 419–439.Google Scholar
  21. Crome, F. H. J., Moore, L. A., and Richards, G. C.: 1992, ‘A study of logging damage in upland rainforest in North Queensland’, Forest Ecol. Manage. 49, 1–29.Google Scholar
  22. Curran, L. M., Caniago, I., Paoli, G. D., Astianti, D., Kusneti, M., Leighton, M., Nirarita, C. E., and Haeruman, H.: 1999, ‘Impact of El Nio and logging on canopy tree recruitment in Borneo’, Science 286, 2184–2188.CrossRefPubMedGoogle Scholar
  23. Curran, L. M. and Leighton, M.: 2000, ‘Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae’, Ecol. Monogr. 70, 101–128.Google Scholar
  24. Curran, L. M. and Webb, C. O.: 2000, ‘Experimental tests of the spatiotemporal scale of seed predation in mast-fruiting Dipterocarpaceae’, Ecol. Monogr. 70, 129–148.Google Scholar
  25. da Silva, J. M. C. and Tabarelli, M. 2000, ‘Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil’, Nature 404, 72–74.CrossRefPubMedGoogle Scholar
  26. Danimihardja, S. and Gandawidjaja, D. (eds.): 1996, Plant Resources South-East Asia 5: 2 Timber Trees: Minor Commercial Timbers, PROSEA, Bogor, Indonesia.Google Scholar
  27. Danimihardja, S. and Riswan, S. (eds.): 1994, Plant Resources South-East Asia 5: 1 Timber Trees. Major Commercial Timbers, PROSEA, Bogor, Indonesia.Google Scholar
  28. Denslow, J. S.: 1987, ‘Tropical rainforest gaps and tree species diversity’, Annu. Rev. Ecol. Syst. 18, 431–451.Google Scholar
  29. Ditzer, T., Glauner, R., Förster, M., Köhler, P., and Huth, A.: 2000, ‘The process-based stand growth model Formix3-Q applied in a GIS-environment for growth and yield analysis in a tropical rainforest’, Tree Physiol. 20, 367–381.Google Scholar
  30. Duncan, R. S. and Chapman, C. A.: 1999, ‘Seed dispersal and potential forest succession in abandoned agriculture in tropical Africa’, Ecol. Appl. 9, 998–1008.Google Scholar
  31. Eschenbach, C., Glauner, R., Kleine, M., and Kappen, L.: 1998, ‘Photosynthetic rates of selected tree species in lowland Dipterocarp rainforest of Sabah Malaysia’, Trees 12, 356–365.Google Scholar
  32. FAO: 2001, State of the World’s Forests 2001, FAO, Rome.Google Scholar
  33. Forestal International Limited: 1973, ‘Sabah forest inventory 1969-1972’, Research Report, Sabah Forestry Department, Sandakan, Sabah, Malaysia.Google Scholar
  34. Fowler, J., Cohen, L., and Jarvis, P.: 1998, Practical Statistics for Field Biology, Wiley, Chichester, UK.Google Scholar
  35. Fox, J. E. D.: 1970, Preferred Check-List of Sabah Trees, No. 7 in Sabah Forest Record, Borneo Literature Bureau, Sandakan, Malaysia.Google Scholar
  36. Frederickson, T. S. and Mostacedo, B.: 2000, ‘Regeneration of timber species following selection logging in a Bolivian tropical dry forest’, Forest Ecol. Manage. 131, 47–55.Google Scholar
  37. Garwood, N. C.: 1983, ‘Seed dormancy in a seasonal tropical forest in Panama: A community study’, Ecol. Monogr. 53, 159–181.Google Scholar
  38. Garwood, N. C.: 1989, ‘Tropical soil seed banks: A review’, in Pickett, S. T. and McDonald, M. J.: (eds.), Ecology of Soil Seed Banks, Academic Press, New York, pp. 149–209.Google Scholar
  39. Glauner, R.: 2000, The role of soil-and-site science in management planning in managed and natural forests. An example from Sabah, Malysia, Mitteilungen der Bundesanstalt für Forst- und Holzwirtschaft, Vol. 197, Max Wiedebusch Kommission Verlag, Hamburg, Germany.Google Scholar
  40. Glauner, R., Ditzer, T., and Huth, A.: 2003, ‘Growth and yield of tropical moist forest for forest planning – An inquiry through modeling’, Can. J. Forest Res. 33, 521–535.Google Scholar
  41. Golley, F. B. (ed.): 1983, Tropical Rainforest Ecosystems (Ecosystems of the World 14A), Elsevier, Amsterdam.Google Scholar
  42. Graf, U., Henning, H. P., Stange, K., and Wilrich, P. T.: 1987, Formeln und Tabellen der angewandten mathematischen Statistik, Springer, Berlin.Google Scholar
  43. Guariguata, M. R.: 2000, ‘Seed and seedling ecology of tree species in neotropical secondary forests: Management implications’, Ecol. Appl. 10, 145–154.Google Scholar
  44. Hendrison, J.: 1990, Damage-Controlled Logging in Managed Rainforest in Suriname, Agricultural University Wageningen, the Netherlands.Google Scholar
  45. Holling, C. S.: 1973, ‘Resilience and stability of ecological systems’, Annu. Rev. Ecol. Syst. 4, 1–23.Google Scholar
  46. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A.: (eds.) 2001, Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK.Google Scholar
  47. Howard, A. F. and Valerio, J.: 1992, ‘A diameter class growth model for assessing the sustainability’, Commonw. Forestry Rev. 71, 171–177.Google Scholar
  48. Huth, A. and Ditzer, T.: 2000, ‘Simulation of the growth of tropical rain forests-Formix3’, Ecol. Modell. 134, 1–25.Google Scholar
  49. Huth, A. and Ditzer, T.: 2001, ‘Long-term impacts of logging in a tropical rain forest – A simulation study’, Forest Ecol. Manage. 142, 33–51.Google Scholar
  50. Johns, A. D.: 1997, Timber Production and Biodiversity Conservation in Tropical RainForests, Cambridge University Press Cambridge, UK.Google Scholar
  51. Johns, J. S., Barreto, P., and Uhl, C.: 1996, ‘Logging damage during planned and unplanned logging operations in the eastern Amazon’, Forest Ecol. Manage. 89, 59–77.Google Scholar
  52. Kammesheidt, L.: 2000, ‘Some autecological characteristics of early to late successional tree species in Venezuela’, Acta Oecol. 21, 37–48.Google Scholar
  53. Kammesheidt, L., Köhler, P., and Huth, A.: 2001, ‘Sustainable timber harvesting in Venezuela: A modelling approach’, J. Appl. Ecol. 38, 756–770.Google Scholar
  54. Kato, R., Tadaki, Y., and Ogawa, H.: 1978, ‘Plant biomass and growth increment studies in Pasoh Forest’, Malays. Nat. J. 30, 211–224.Google Scholar
  55. Keating, W. G. and Bolza, E.: 1982, Characteristics Properties and Use of Timbers in South-East Asia North Australia and the Pacific, Inkarta Press Melbourne, Australia.Google Scholar
  56. Kilou, P., Lagan, P., Glauner, R., and Kleine, M.: 1993, ‘Medium term forest management planning inventory’, GTZ report 174, Sabah Forestry Department, Malaysian–German Sustainable Forest Management Project, Sandakan, Sabah Malaysia.Google Scholar
  57. Kira, T.: 1978, ‘Community architecture and organic matter dynamics in tropical lowland rainforests of Southeast Asia with special reference to Pasoh Forest West-Malaysia’, in Tomlinson, P. B., and Zimmermann, M. H. (eds.), Tropical Trees as Living Systems, Cambridge University Press Cambridge, UK, pp. 26–30.Google Scholar
  58. Köhler, P.: 1998, ‘Parameter research for the tropical rainforest growth model Formix4’, Research report P9801, Center for Environmental Systems Research, University of Kassel, Germany.Google Scholar
  59. Köhler, P.: 2000, Modelling Anthropogenic Impacts on the Growth of Tropical Rainforests—Using an Individual-Oriented Forest Growth Model for Analyses of Logging and Fragmentation in Three Case Studies, PhD Thesis, University of Kassel, Der Andere Verlag, Osnabrück, Germany. Online at Scholar
  60. Köhler, P., Chave, J., Riéra, B., and Huth, A.: 2003, ‘Simulating long-term response of tropical wet forests to fragmentation’, Ecosystems 6, 129–143.Google Scholar
  61. Köhler, P., Ditzer, T., and Huth, A.: 2000, ‘Concepts for the aggregation of tropical tree species into functional types and the application on Sabah’s lowland rainforests. Species list used for the article at’, J. Trop. Ecol. 16, 591–602.Google Scholar
  62. Köhler, P., Ditzer, T., Ong, R. C., and Huth, A.: 2001, ‘Comparison of measured and modelled growth on permanent plots in Sabahs rainforests’, Forest Ecol. Manage. 144, 101–111.Google Scholar
  63. Köhler, P. and Huth, A.: 1998, ‘The effect of tree species grouping in tropical rainforest modelling – Simulation with the individual based model ’, Ecol. Modell. 109, 301–321.Google Scholar
  64. Landsberg, J. J. and Waring, R. H.: 1997, ‘A generalized model for forest productivity using simplified concepts of radiation-use efficiency carbon balance and partitioning’, Forest Ecol. Manage. 95, 209–228.Google Scholar
  65. Laurance, W. F., Ferreira, L. V., Rankin-deMerona, J. M., and Laurance, S. G.: 1998, ‘Rainforest fragmentation and the dynamics of Amazonian tree communities’, Ecology 79, 2032–2040.Google Scholar
  66. Leishman, M. R., Westoby, M., and Jurado, E.: 1995, ‘Correlates of seed size variation – A comparison among 5 temperate floras’, J. Ecol. 83, 517–529.Google Scholar
  67. Liu, J. and Ashton, P. S.: 1995, ‘Individual-based simulation models for forest succession and management’, Forest Ecol. Manage. 73, 157–175.Google Scholar
  68. Liu, J. and Ashton, P. S.: 1999, ‘Simulating effects of landscape context and timber harvest on tree species diversity’, Ecol. Appl. 9, 186–201.Google Scholar
  69. Malmer, A.: 1996, ‘Nutrient losses from Dipterocarp forests--A case study of forest plantation establishment in Sabah Malaysia’, in Schulte, A. and Schöne, D. (eds.), Dipterocarp Forest Ecosystems Towards Sustainable Management. World Scientific, Singapore, pp. 52–73.Google Scholar
  70. Manokaran, N. and Kochummen, K. M.: 1987, ‘Recruitment growth and mortality of tree species in a lowland Dipterocarp forest in Peninsular Malaysia’, J. Trop. Ecol. 3, 315–330.Google Scholar
  71. Manokaran, N. and Swaine, M. D.: 1994, Population Dynamics of Trees in Dipterocarp Forests of Peninsular Malaysia, No. 40 in Malayan Forest Records, Forest Research Institute of Malaysia Kuala Lumpur.Google Scholar
  72. Meijer, W. and Wood, G. H. S.: 1964, Dipterocarps of Sabah, No. 5 in Sabah Forest Record, Sabah Forestry Department Sandakan, Malaysia.Google Scholar
  73. Monsi, M. and Saeki, T.: 1953, ‘über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion’, Jpn. J. Bot. 14, 22–52.Google Scholar
  74. Murty, D. and McMurtie, R. E.: 2000, ‘The decline of forest productivity as stand age: A model-based method for analysing causes of decline’, Ecol. Modell. 134, 185–205.Google Scholar
  75. Nicotra, A. B., Chazdon, R. L., and Iriarte, S. V. B.: 1999, ‘Spatial heterogeneity of light and woody seedlings regeneration in tropical wet forests’, Ecology 80, 1908–1926.Google Scholar
  76. Ong, R. C. and Kleine, M.: 1996, ‘DIPSIM: Dipterocarp forest growth simulation model – A tool for forest-level management planning’, in Schulte, A. and Schöne, D.: (eds.), Dipterocarp Forest Ecosystems – Towards Sustainable Management, World Scientific, Singapore, pp. 228–246.Google Scholar
  77. Pacala, S., Canham, C., and Silander, J. J.: 1993, ‘Forest models defined by field measurements: I. The design of a northeastern forest simulator’, Can. J. Forest Res. 23, 1980–1988.Google Scholar
  78. Pacala, S. W., Canham, C. D., Saponara, J., Silander, J. A., Kobe, R. K., and Ribbens, E.: 1996, ‘Forest models defined by field measurements, Estimation error analysis and dynamics’, Ecol. Monogr. 66, 1–43.Google Scholar
  79. Phillips, O. L. and Gentry, A. H.: 1994, ‘Increasing turnover through time in tropical forests’, Science 263, 954–958.Google Scholar
  80. Pinard, M. A., Barker, M. G., and Tay, J.: 2000, ‘Soil distribution and post-logging forest recovery on bulldozer paths in Sabah, Malaysia’, Forest Ecol. Manage. 130, 213–225.Google Scholar
  81. Pinard, M. A. and Putz, F. E.: 1996, ‘Retaining forest biomass by reducing logging damage’, Biotropica 28, 278–295.Google Scholar
  82. Poker, J.: 1993, Struktur und Dynamik des Bestandesmosaiks tropischer Regenwälder, No. 174 in Mitteilungen der Bundesanstalt für Forst- und Holzwirtschaft, Kommissionsverlag Max Wiedebusch, Hamburg, Germany.Google Scholar
  83. Price, D. T., Zimmermann, N. E., van der Meer, P. J., Lexer, M. J., Leadley, P., Jorritsma, I. T. M., Schaber, J., Clark, D. F., Lasch, P., McNulty, S., Wu, J., and Smith, B.: 2001, ‘Regeneration in gap models: Priority issues for studying forest responses to climate change’, Climatic Change 51, 475–508.Google Scholar
  84. Ribbens, E., Silander, J. A., and Pacala, S. W.: 1994, ‘Seedling recruitment in forests Calibrating models to predict patterns of tree seedling dispersion’, Ecology 75, 1794–1806.Google Scholar
  85. Rollet, B.: 1978, ‘Organization’, in UNESCO, UNEP and FAO (eds.), Tropical Forest Ecosystems – A State-of-Knowledge Report, UNESCO – UNEP, Paris, pp. 112–143.Google Scholar
  86. Ruhiyat, D.: 1989, Die Entwicklung der standörtlichen Nährstoffvorräte bei naturnaher Waldbewirtschaftung und im Plantagenbetrieb, Ostkalimantan, Indonesien, No. 35 in Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen, Goltze, Göttingen, Germany.Google Scholar
  87. Ryan, M. G., Binkley, D., and Fownes, J. H.: 1997, ‘Age-related decline in forest productivity pattern and process’, Adv. Ecol. Res. 27, 214–262.Google Scholar
  88. Ryan, M. G., Hubbard, R. M., Clark, D. A., and Sanford, R. L.: 1994, ‘Wood-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habitats’, Oecologia 100, 213–220.Google Scholar
  89. Sabah Forestry Department: 1994, ‘Forest Management Plan, Forest Management Unit No. 19’, Report, Sabah Forestry Department, Sandakan Sabah, Malaysia.Google Scholar
  90. Sachs, L.: 1997, Angewandte Statistik, Springer, Berlin.Google Scholar
  91. Schlensog, M.: 1997, Experimentelle Untersuchungen des Lichtklimas in Urwaldparzellen Nordborneos, No. 117 in Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen, Goltze, Göttingen, Germany.Google Scholar
  92. Shugart, H. H.: 1998, Terrestrial Ecosystems in Changing Environments, Cambridge University Press Cambridge, UK.Google Scholar
  93. Sist, P., Nolan, T., Bertault, J., and Dykstra, D.: 1998, ‘Harvesting intensity versus sustainability in Indonesia’, Forest Ecol. Manage. 108, 251–260.Google Scholar
  94. Swaine, M. D. and Whitmore, T. C.: 1988, ‘On the definition of ecological species groups in tropical rain forests’, Vegetatio 75, 81–86.Google Scholar
  95. Tabarelli, M., Mantovani, W., and Peres, C. A.: 1999, ‘Effects of habitat fragementation on plant guild structure in the montane Atlantic forest of southeastern Brazil’, Biol. Conservation 91, 119–127.Google Scholar
  96. Thomas, S. C. and Bazzaz, F. A.: 1999, ‘Asymptotic height as predictor of photosynthetic characteristics in Malaysian rain forest trees’, Ecology 80, 1607–1622.Google Scholar
  97. Turner, I. M.: 1996, ‘Species loss in fragments of tropical rain forest: A review of the evidence’, J. Appl. Ecol. 33, 200–209.Google Scholar
  98. Turner, I. M., Chua, K. S., Ong, S. Y., Soong, B. C., and Tan, H. T. W.: 1995, ‘A century of plant species loss from an isolated fragment of lowland tropical rain forest’, Conservation Biol. 10, 1229–1244.Google Scholar
  99. Uchmański, J. and Grimm, V.: 1996, ‘Individual-based modelling in ecology: What makes the difference?’, Trends Ecol. Evol. 11, 437–440.Google Scholar
  100. Vanclay, J. K.: 1995, ‘Growth models for tropical forests: A synthesis of models and methods’, Forest Sci. 41, 7–42.Google Scholar
  101. van der Meer, P. J. and Bongers, F.: 1996, ‘Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana’, J. Ecol. 84, 19–29.Google Scholar
  102. Warner, R. R. and Chesson, P. L.: 1985, ‘Coexistence mediated by recruitment fluctuations A field guide to the storage effect’, Amer. Nat. 125, 769–787.Google Scholar
  103. Webb, C. O. and Peart, D. R.: 1999, ‘Seedling density dependence promotes coexistence of Bornean rainforest trees’, Ecology 80, 2006–2017.Google Scholar
  104. Whitmore, T. C.: 1983, ‘Secondary succession from seed in tropical rain forests’, Forestry Abstr. 44, 767–778.Google Scholar
  105. Whitmore, T. C.: 1998, An Introduction to Tropical Rain Forests, 2nd edn., Oxford University Press Oxford.Google Scholar
  106. Yasuda, M., Matsumoto, J., Osada, N., Ichikawa, S., Kachia, N., Tani, M., Okuda, T., Furukawa, A., Nik, A. R., and Manokaran, N.: 1999, ‘The mechanism of general flowering in Dipterocarpaceae in the Malay Peninsula’, J. Trop. Ecol. 15, 437–449.Google Scholar
  107. Yoda, K.: 1983, ‘Community respiration in a lowland rain forest in Pasoh Peninsular Malaysia’, Jpn. J. Ecol. 33, 183–197.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Centre for Environmental Systems ResearchUniversity of KasselKasselGermany
  2. 2.Centre for Environmental Research Leipzig-HalleDepartment of Ecological ModellingLeipzigGermany

Personalised recommendations