Advertisement

Czechoslovak Journal of Physics

, Volume 56, Issue 12, pp 1329–1337 | Cite as

Impact of fast vertical and radial plasma movement on type-I ELMs in ASDEX upgrade

  • P. T. Lang
  • O. Gruber
  • V. Mertens
  • R. Neu
  • F. Ryter
  • W. Schneider
  • A. C. C. Sips
  • W. Suttrop
  • ASDEX Upgrade Team
  • S. H. Kim
  • J. B. Lister
  • Y. R. Martin
  • S. Yu. Medvedev
Article

Abstract

For the ITER project it is clear that steps have to be taken in order to avoid or mitigate type-I ELMs when operating in the standard H-mode scenario. Otherwise, divertor power loads induced by intrinsic ELMs will result in an intolerably short divertor life time. Amongst others, “magnetic triggering” based on a fast vertical movement of the plasma column has proven its ability to achieve ELM frequency control and hence mitigation by locking the ELM frequency to the imposed motion. Here, we report on an attempt to widen this approach by applying a cyclic radial plasma shift. Although motional cycle amplitudes sufficient for ELM frequency locking were achieved even easier than in the vertical case, no ELM control was established for the radial case. Analysis of this different behaviour can allow for better insight into underlying ELM release mechanisms and might potentially be a useful tool for mapping out ELM stability boundaries.

PACS

52.55.Fa 52.35.Py 52.55.Rk 

Key words

tokamak edge transport MHD instabilities ELM plasma control magnetic triggering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Herrmann: Plasma Phys. Control. Fusion44 (2002) 883.CrossRefADSGoogle Scholar
  2. [2]
    F. Federici et al.: Plasma Phys. Control. Fusion45 (2003) 1523.CrossRefADSGoogle Scholar
  3. [3]
    R.A. Moyer et al.: Phys. Plasmas12 (2005) 056119.CrossRefGoogle Scholar
  4. [4]
    P.T. Lang et al.: Nucl. Fusion43 (2003) 1110.CrossRefADSGoogle Scholar
  5. [5]
    A. Degeling et al.: Plasma Phys. Control. Fusion45 (2003) 1637.CrossRefADSGoogle Scholar
  6. [6]
    P.T. Lang et al.: Plasma Phys. Control. Fusion46 (2004) L31.Google Scholar
  7. [7]
    S.H. Kim et al.: in32nd EPS Conf., Tarragona 2005, P5.014 on CD ROM.Google Scholar
  8. [8]
    S.Y. Medvedev et al.: in32nd EPS Conf., Tarragona 2005, P5.064 on CD ROM.Google Scholar
  9. [9]
    V. Mertens et al.: Fusion Science and Technology44 (2003) 593.ADSGoogle Scholar
  10. [10]
    R. Neu et al.: Nucl. Fusion45 (2005) 209.CrossRefADSGoogle Scholar
  11. [11]
    W. Schneider et al.: Fusion Eng. Design48 (2000) 127.CrossRefGoogle Scholar
  12. [12]
    P.J. McCarthy et al.: inProc. 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003, (Eds. R. Koch and S. Lebedev), Europhysics Conference Abstracts, Vol. 27A, EPS, Geneva, 2003, P-1.64 on CD ROM.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • P. T. Lang
    • 1
  • O. Gruber
    • 1
  • V. Mertens
    • 1
  • R. Neu
    • 1
  • F. Ryter
    • 1
  • W. Schneider
    • 1
  • A. C. C. Sips
    • 1
  • W. Suttrop
    • 1
  • ASDEX Upgrade Team
    • 1
  • S. H. Kim
    • 2
  • J. B. Lister
    • 2
  • Y. R. Martin
    • 2
  • S. Yu. Medvedev
    • 3
  1. 1.Max-Planck-Institut für PlasmaphysikEURATOM AssociationGarchingGermany
  2. 2.CRPP-EPFL, Association EURATOM-Confédération SuisseLausanneSwitzerland
  3. 3.Keldysh Institute for Applied MathematicsRussian Acad. Sci.MoscowRussia

Personalised recommendations