Czechoslovak Journal of Physics

, Volume 56, Issue 10–11, pp 1143–1148 | Cite as

Quantization of bending flows

  • Gregorio Falqui
  • Fabio Musso


We briefly review the Kapovich-Millson notion of bending flows as an integrable system on the space of polygons inR 3, its connection with a specific GaudinXXX system, as well as the generalization to su(r),r>2. Then we consider the quantization problem of the set of Hamiltonians pertaining to the problem, quite naturally called bending Hamiltonians, and prove that their commutativity is preserved at the quantum level.


02.30.Ik 02.20.Sv 

Key words

Lax matrices XXX Gaudin models quantum integrable systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Kapovich and J. Millson: J. Differ. Geom.44 (1996) 479.zbMATHMathSciNetGoogle Scholar
  2. [2]
    G. Falqui and F. Musso: J. Phys. A: Math. Gen.36 (2003) 11655.zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. [3]
    A. Ballesteros and O. Ragnisco: J. Math. Phys.43 (2002) 954.zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. [4]
    G. Falqui and F. Musso: nlin.SI/0402026, submitted.Google Scholar
  5. [5]
    E.K. Sklyanin: Progr. Theor. Phys. Suppl.118 (1995) 35.CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    G. Falqui and M. Pedroni: Math. Phys. Anal. Geom.6 (2003) 139.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    B. Feigin, E. Frenkel, and N. Reshetikhin: Commun. Math. Phys.166 (1994) 27.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. [8]
    V. Talalaev: Funct. Anal. Appl.40 (2006) 73.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Chervov and V. Talalev: hep-th/0604128.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Gregorio Falqui
    • 1
  • Fabio Musso
    • 2
  1. 1.Dipartimento di Matematica e ApplicazioniUniversità di Milano-BicoccaMilanoItaly
  2. 2.Dipartimento di FisicaUniversità di Roma III, and INFN, Sezione di Roma IIIRomaItaly

Personalised recommendations