Advertisement

Czechoslovak Journal of Physics

, Volume 56, Issue 10–11, pp 1123–1130 | Cite as

From nonassociativity to solutions of the KP hierarchy

  • Aristophanes Dimakis
  • Folkert Müller-Hoissen
Article

Abstract

A recently observed relation between ‘weakly nonassociative’ algebras\(\mathbb{A}\) (for which the associator (\(\mathbb{A},\mathbb{A}^2 ,\mathbb{A}\)) vanishes) and the KP hierarchy (with dependent variable in the middle nucleus\(\mathbb{A}\)′ of {\(\mathbb{A}\)) is recalled. For any such algebra there is a nonassociative hierarchy of ODEs, the solutions of which determine solutions of the KP hierarchy. In a special case, and with matrix algebra\(\mathbb{A}\)′, this becomes a matrix Riccati hierarchy which is easily solved. The matrix solution then leads to solutions of the scalar KP hierarchy. We discuss some classes of solutions obtained in this way.

PACS

02.10.Hh 02.30.Ik 05.45.Yv 

Key words

integrable hierarchy KP nonassociativity Riccati equation soliton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Dimakis and F. Müller-Hoissen: nlin.SI/0601001.Google Scholar
  2. [2]
    L.V. Bogdanov and B.G. Konopelchenko: J. Math. Phys.39 (1998) 4701.zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. [3]
    B. Carl and C. Schiebold: Nonlinearity12 (1999) 333.zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. [4]
    V.A. Marchenko:Nonlinear Equations and Operator Algebras. Reidel, Dordrecht, 1988.zbMATHGoogle Scholar
  5. [5]
    A. Kasman and M. Gekhtman: J. Math Phys.42 (2001) 3540.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. [5]a
    M. Gekhtman and A. Kasman: Theor. Math. Phys.133 (2002) 1498.CrossRefMathSciNetGoogle Scholar
  7. [5]b
    W. Han and Y. Li: Phys. Lett. A283 (2001) 185.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. [6]
    V.E. Zakharov and A.B. Shabat: Funct. Anal. Appl.8 (1974) 226.zbMATHCrossRefGoogle Scholar
  9. [6]a
    J. Satsuma: J. Phys. Soc. Jpn.40 (1976) 286.CrossRefADSMathSciNetGoogle Scholar
  10. [6]b
    K. Okhuma and M. Wadati: J. Phys. Soc. Jpn.52 (1983) 749.CrossRefADSGoogle Scholar
  11. [6]c
    A. Nakamura: J. Phys. Soc. Jpn.58 (1989) 412.CrossRefADSGoogle Scholar
  12. [6]d
    S. Miyake, Y. Ohta, and J. Satsuma: J. Phys. Soc. Jpn.59 (1990) 48.CrossRefADSMathSciNetGoogle Scholar
  13. [7]
    S.V. Manakov, V.E. Zakharov, L.A. Bordag, A.R. Its, and V.B. Matveev: Phys. Lett. A63 (1977) 205.CrossRefADSGoogle Scholar
  14. [8]
    V.B. Matveev and M.A. Salle:Darboux Transformations and Solitons. Springer, Berlin, 1991.zbMATHGoogle Scholar
  15. [9]
    S. Wolfram:The Mathematica Book. Wolfram Media, Champaign IL, 2003.Google Scholar
  16. [10]
    J.W. Miles: J. Fluid Mech.79 (1977) 171.zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. [10]a
    J.N. Dinkel, C. Setzer, S. Rawal, and K.E. Lonngren: Chaos, Solitons and Fractals12 (2001) 91.zbMATHCrossRefGoogle Scholar
  18. [11]
    E. Medina: Lett. Math. Phys.62 (2002) 91.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [11]a
    G. Biondini and Y. Kodama: J. Phys. A: Math. Gen.36 (2003) 10519.zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. [11]b
    Y. Kodama: J. Phys. A: Math. Gen.37 (2004) 11169.zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. [12]
    G. Biondini and S. Chakravarty: J. Math. Phys.47 (2006) 033514.CrossRefMathSciNetGoogle Scholar
  22. [13]
    A.A. Zaitsev: Sov. Phys. Dokl.28 (1983) 720.ADSGoogle Scholar
  23. [13]a
    M. Tajiri and Y. Murakami: J. Phys. Soc. Jpn.58 (1989) 3029.CrossRefADSMathSciNetGoogle Scholar
  24. [13]b
    M. Tajiri and Y. Murakami: Phys. Lett. A143 (1990) 217.CrossRefADSMathSciNetGoogle Scholar
  25. [13]c
    Y. Murakami and M. Tajiri: Wave Motion14 (1991) 169; J. Phys. Soc. Jpn.61 (1992) 791.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [13]d
    M. Tajiri, Y. Fujimura and Y. Murakami: J. Phys. Soc. Jpn.61 (1992) 783.CrossRefADSMathSciNetGoogle Scholar
  27. [14]
    Q.P. Liu and M. Mañas: J. Nonlinear Sci.9 (1999) 213.CrossRefADSMathSciNetGoogle Scholar
  28. [15]
    M.J. Ablowitz and J. Satsuma: J. Math. Phys.19 (1978) 2180.zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. [15]a
    R.S. Johnson and S. Thompson: Phys. Lett. A66 (1978) 279.CrossRefADSMathSciNetGoogle Scholar
  30. [15]b
    A.S. Fokas and M.J. Ablowitz: Stud. Appl. Math.69 (1983) 211.zbMATHMathSciNetGoogle Scholar
  31. [15]c
    L.A. Abramyan and Yu.A. Stepanyants: Radiophys. Quant. Electron.28 (1985) 20.CrossRefMathSciNetGoogle Scholar
  32. [15]d
    D. Pelinovsky: J. Math. Phys.35 (1994) 5820.zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. [15]e
    A.A. Minzoni and N.F. Smyth: Wave Motion24 (1996) 291.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [15]f
    J.J. Ablowitz and J. Villarroel: Phys. Rev. Lett.78 (1997) 570.zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. [15]g
    M.J. Ablowitz, S. Chakravarty, A.D. Trubatch, and J. Villarroel: Phys. Lett. A267 (2000) 132.zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Aristophanes Dimakis
    • 1
  • Folkert Müller-Hoissen
    • 2
  1. 1.Department of Financial and Management EngineeringUniversity of the AegeanChiosGreece
  2. 2.Max-Planck-Institute for Dynamics and Self-OrganizationGöttingenGermany

Personalised recommendations