Advertisement

Czechoslovak Journal of Physics

, Volume 56, Issue 10–11, pp 1087–1092 | Cite as

Fractional hamilton formalism within caputo’s derivative

  • Dumitru Baleanu
  • Om. P. Agrawal
Article

Abstract

In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canonical Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange formulations lead to the same set of equations.

PACS

11.10.Ef 

Key words

fractional Euler-Lagrange equations fractional Hamiltonian formulation Caputo derivative 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K.B. Oldham and J. Spanier:The Fractional Calculus, Academic Press, New-York, 1974.zbMATHGoogle Scholar
  2. [2]
    K.S. Miller and B. Ross:An Introduction to the Fractional Integrals and Derivatives-Theory and Applications, John Wiley and Sons Inc., New York, 1993.Google Scholar
  3. [3]
    S.G. Samko, A.A. Kilbas, and O.I. Marichev:Fractional Integrals and Derivatives — Theory and Applications, Gordon and Breach, Linghorne, P.A., 1993.zbMATHGoogle Scholar
  4. [4]
    R. Hilfer:Applications of Fractional Calculus in Physics, World Scientific Publishing Company, Singapore, 2000.zbMATHGoogle Scholar
  5. [5]
    I. Podlubny:Fractional Differential Equations, Academic Press, San Diego CA, 1999.zbMATHGoogle Scholar
  6. [6]
    G.M. Zaslavsky:Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2005.zbMATHGoogle Scholar
  7. [7]
    A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo:Theory and Applications of Fractional Differential Equations, Elsevier, 2006.Google Scholar
  8. [8]
    R.L. Magin:Fractional Calculus in Bioengineering, Begell House Publisher, Inc., Connecticut, 2006.Google Scholar
  9. [9]
    F. Mainardi, Yu. Luchko, and G. Pagnini: Frac. Calc. Appl. Anal.4 (2001) 153.zbMATHMathSciNetGoogle Scholar
  10. [10]
    M. Naber: J. Math. Phys.45 (2004) 3339.zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. [11]
    F. Riewe: Phys. Rev. E53 (1996) 1890.CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    F. Riewe: Phys. Rev. E55 (1997) 3581.CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    M. Klimek: Czech. J. Phys.51 (2001) 1348.zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. [14]
    M. Klimek: Czech. J. Phys.52 (2002) 1247.zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. [15]
    M. Klimek: Czech. J. Phys.55 (2005) 1447.CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    O.P. Agrawal: J. Math. Anal. Appl.272 (2002) 368.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    D.W. Dreisigmeyer and P.M. Young: J. Phys. A: Math. Gen.36 (2003) 8297.zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. [18]
    D.W. Dreisigmeyer and P.M. Young: J. Phys. A: Math. Gen.37 (2004) L117.Google Scholar
  19. [19]
    D. Baleanu: inProc. 1st IFAC Workshop on Fractional Differentiation and its Applications, Bordeaux, France, July 19–21, 2004, (Ed. A. Oustaloup), 2004, p. 597.Google Scholar
  20. [20]
    O.P. Agrawal: inProc. MME06, Ankara, Turkey, April 27–29, 2006, (Eds. K. Tas, J.A. Tenreiro Machado, and D. Baleanu), to appear in J. Vib. Contr. (2006).Google Scholar
  21. [21]
    E.M. Rabei, K.I. Nawafleh, R.S. Hijjawi, S.I. Muslih, and D. Baleanu: J. Math. Anal. Appl., in press (2006).Google Scholar
  22. [22]
    D. Baleanu and S. Muslih: inIntelligent Systems at the Service of Mankind, Vol. 2. (Eds. W. Elmenreich, J.A. Tenreiro Machado, and J. Rudas), U-Books Verlag, Augsburg, Germany, 2005.Google Scholar
  23. [23]
    D. Baleanu: inFractional differentiation and its applications. (Eds. A. Le Mehaute, J.A. Tenreiro Machado, J.C. Trigeassou, and J. Sabatier), U-Books Verlag, Augsburg, Germany, November 2005.Google Scholar
  24. [24]
    S.I. Muslih and D. Baleanu: J. Math. Anal. Apl.304 (2005) 599.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    D. Baleanu: Signal Processing86 (2006) 2632.CrossRefGoogle Scholar
  26. [26]
    S. Muslih and D. Baleanu: Czech. J. Phys.55 (2005) 633.CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    D. Baleanu and S. Muslih: Physica Scripta72 (2005) 119.zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. [28]
    O.P. Agrawal: inProc. IFAC/FDA06, Porto, Portugal, July 19–21, 2006, (Ed. A. Oustaloup), 2006, p. 131.Google Scholar
  29. [29]
    O.P. Agrawal: Nonlinear Dynamics38 (2004) 323.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    O.P. Agrawal and D. Baleanu: inProc. MME06, Ankara, Turkey, April 27–29, 2006. (Eds. K. Tas, J.A. Tenreiro Machado and D. Baleanu), to appear in J. Vib. Contr. (2006).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Dumitru Baleanu
    • 1
    • 2
  • Om. P. Agrawal
    • 3
  1. 1.Department of Mathematics and Computer SciencesFaculty of Arts and Sciences Çankaya University, BalgatAnkaraTurkey
  2. 2.Institute of Space SciencesMagurele-BucharestRomania
  3. 3.Southern Illinois UniversityCarbondaleUSA

Personalised recommendations