Advertisement

Czechoslovak Journal of Physics

, Volume 56, Issue 9, pp 977–984 | Cite as

On a few new quantization recipes using \(\mathcal{P}\mathcal{T}\)-symmetry

  • Miloslav Znojil
Article

Abstract

A review of a few recent developments in our analysis and applications of the coupled-channel version of the formalism of \(\mathcal{P}\mathcal{T}\)-symmetric quantum mechanics is given.

Key words

coupled channels PT symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Cooper, A. Khare, and U. Sukhatme: Phys. Rep. 251 (1995) 267. A. Sinha and P. Roy: Czech. J. Phys. 54 (2004) 129.MathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Weinberg: The Quantum Theory of Fields I. Foundations. CUP, Cambridge, 1995.Google Scholar
  3. [3]
    D. Bessis: private communication, 1992. G. Alvarez: J. Phys. A: Math. Gen. 27 (1995) 4589.Google Scholar
  4. [4]
    P. Dorey, C. Dunning, and R. Tateo: J. Phys. A: Math. Gen. 34 (2001) 5679.zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. [5]
    C.M. Bender and S. Boettcher: Phys. Rev. Lett. 80 (1998) 4243.MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    F.G. Scholtz, H.B. Geyer, and F.J.W. Hahne: Ann. Phys. (NY) 213 (1992) 74. F.G. Scholtz and H.B. Geyer: Phys. Lett B 634 (2006) 84; J. Phys. A: Math. Gen. 39 (2006) 10189.zbMATHMathSciNetCrossRefADSGoogle Scholar
  7. [7]
    A. Mostafazadeh: J. Math. Phys. 43 (2002) 205.zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. [8]
    M. Znojil: Rendiconti del Circ. Mat. di Palermo, Ser. II, Suppl. 72 (2004) 211; math-ph/0104012.zbMATHMathSciNetGoogle Scholar
  9. [9]
    C.M. Bender, D.C. Brody, and H.F. Jones: Phys. Rev. Lett. 89 (2002) 0270401.Google Scholar
  10. [10]
    M. Znojil and H.B. Geyer: Phys. Lett. B 640 (2006) 52.MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    C.M. Bender: Czech. J. Phys. 54 (2004) 1027. A. Mostafazadeh: Czech. J. Phys. 55 (2005) 1157.MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    H. Bila, M. Tater, and M. Znojil: Phys. Lett. A 351 (2006) 452.MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    M. Znojil: J. Phys. A: Math. Gen. 39 (2006) 441.zbMATHMathSciNetCrossRefADSGoogle Scholar
  14. [14]
    M. Znojil: Phys. Lett. A, to appear; quant-ph/0601048.Google Scholar
  15. [15]
    M. Znojil: J. Phys. A: Math. Gen. 39 (2006) 4047.zbMATHMathSciNetCrossRefADSGoogle Scholar
  16. [16]
    E. Caliceti et al.: Phys. Lett. A 335 (2005) 26.MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    B. Bagchi et al: Int. J. Mod. Phys. A 20 (2005) 7107.zbMATHMathSciNetCrossRefADSGoogle Scholar
  18. [18]
    M. Znojil: Phys. Lett. A 342 (2005) 36.MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    M. Znojil and V. Jakubský: J. Phys. A: Math. Gen. 38 (2005) 5041.zbMATHCrossRefADSGoogle Scholar
  20. [20]
    H. Bíla, V. Jakubský, and M. Znojil: Phys. Lett. A 350 (2006) 421.MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    M. Znojil: Czech. J. Phys. 55 (2005) 1187.MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    B. Basu-Mallick et al: Czech. J. Phys. 54 (2004) 5. V. Jakubský: Czech. J. Phys. 54 (2004) 67.MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    V. Jakubský et al: Phys. Lett. A 334 (2005) 154.MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    M. Znojil: in Superintegrability in Classical and Quantum Systems, (Ed. P. Tempesta et al.), AMS, Providence, 2004, p. 333.Google Scholar
  25. [25]
    B. Bagchi, H. Bíla, V. Jakubský, S. Mallik, C. Quesne, and M. Znojil: Int. J. Mod. Phys. A 21 (2006) 2173.CrossRefADSGoogle Scholar
  26. [26]
    U. Guenther, F. Stefani, and M. Znojil: J. Math. Phys. 46 (2005) 063504.Google Scholar
  27. [27]
    M. Znojil: in Recent Trends in Exponential Asymptotics, (Ed. Y. Takei), RIMS Kokyuroku series, Vol. 1424, 2005, p. 240; math-ph/0410009.Google Scholar
  28. [28]
    M. Znojil: Phys. Lett. A 341 (2005) 67.MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • Miloslav Znojil
    • 1
    • 2
  1. 1.Department of Theoretical PhysicsNuclear Physics Institute, Acad. Sci. CRŘežCzech Republic
  2. 2.Doppler Institute of Mathematical Physics and Applied MathematicsNuclear Physics Institute, Acad. Sci. CRŘežCzech Republic

Personalised recommendations