Czechoslovak Journal of Physics

, Volume 56, Supplement 2, pp B443–B448 | Cite as

Investigation of effects of double pulse configuration on efficiency of Ni-like and Co-like X-ray resonance lines emitted from laser produced silver plasmas

  • T. Canel
  • A. Demir
  • N. Kenar
Article

Abstract

Ni-like and Co-like X-ray resonance line spectra are simulated between 16 Å and 32 Å emitted from silver plasma using Nd:YAG laser and its second, third and fourth harmonics for double pulse configurations. In addition to spectral lines, X-ray intensities obtained from free-bound and free-free continuum emission from Zn-, Cu-, Ni-, Co-and Fe-like ions are calculated between 1 Å and 30 Å. The intensity for 280 ps pre-pulse is 5.4 × 1012 W/cm2 and for 1.2 ps short pulse is 4.4 × 1015 W/cm2. The time difference between pre-pulse and short pulse is varied between 150 ps and 750 ps. X-ray energy conversion efficiencies and X-ray pulse durations are calculated from X-ray spectra. For example, maximum X-ray energy conversion efficiency for 750 ps time difference is obtained as 0.54 % for fundamental harmonic Nd:YAG laser, 1.01 % for second harmonic, 1.46 % for third harmonic, 1.86 % for fourth harmonic over 2π sr. The ratio of Co-like 3d → 4f and Ni-like 3d → 4f resonance line intensities is calculated to determine electron temperature.

Key words

X-ray laser produced silver plasma X-ray conversion efficiency 

References

  1. [1]
    F. N. Beg et al.: J. Phys. D., Appl. Phys. 31 (1998) 2777.CrossRefADSGoogle Scholar
  2. [2]
    A. G. Michette et al.: J. Phys. D., Appl. Phys. 19 (1986) 363.CrossRefADSGoogle Scholar
  3. [3]
    D. Xenakis et al.: J. Appl. Phys. 71 (1992) 85.CrossRefADSGoogle Scholar
  4. [4]
    H. C. Gerritsen et al.: J. Appl.Phys. 59 (1986) 2337.CrossRefADSGoogle Scholar
  5. [5]
    I. C. E. Turcu et al.: Proc. Soc. of Photo-Opt.2015 (1993) 243.ADSGoogle Scholar
  6. [6]
    I. C. E. Turcu et al.: Appl. Phys. Let. 63 (1993) 3046.CrossRefADSGoogle Scholar
  7. [7]
    D. Batani et al.: Proceedings Society of Photo-Optical Instrumentation Engineers. 1503 (1991) 479.ADSGoogle Scholar
  8. [8]
    A. Demir et al.: Appl. Phys. B. Lasers and Optics 71 (2004) 945.CrossRefADSGoogle Scholar
  9. [9]
    F. Bijkerk et al.: Journal of X-ray Science and Technology 3 (1992) 133.CrossRefGoogle Scholar
  10. [10]
    J. N. Broughton et al.: Journal of X-ray Science and Technology 74 (1993) 3712.Google Scholar
  11. [11]
    J. F. Pelletier et al.: J. Appl. Phys. 81 (1997) 5980.CrossRefADSGoogle Scholar
  12. [12]
    S. J. Pestehe et al.: J. Phys. D.: Appl. Phys. 35 (2002) 1117.CrossRefADSGoogle Scholar
  13. [13]
    B. Yaakobi et al.: Opt. Commun. 38 (1981) 196.CrossRefADSGoogle Scholar
  14. [14]
    D. L. Matthews et al.: J. Appl. Phys. 54 (1983) 4260.CrossRefADSGoogle Scholar
  15. [15]
    M. Kuhne et al.: Microelectron. Eng. 3 (1985) 565.CrossRefGoogle Scholar
  16. [16]
    G. J. Pert: J. Fluid Mech.131 (1983) 401.MATHMathSciNetCrossRefADSGoogle Scholar
  17. [17]
    R. D. Cowan: J. Opt.Soc.Am., 58 (1968) 808.CrossRefADSGoogle Scholar
  18. [18]
    R. W. P., McWhirter: Spectral Intensities’, In: Plasma Diagnostic Techniques. Academic Press Inc., New York, ed. by R.H. Huddlestone and S.L. Leonard,1965.Google Scholar
  19. [19]
    Y. Abou-Ali et al.: J. Phys. B: At. Mol. Opt. Phys. 36 (2003) 4097.CrossRefADSGoogle Scholar
  20. [20]
    H., Griem: Principles of Plasma Spectroscopy. Cambridge: Cambridge University Press,1997.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • T. Canel
    • 1
  • A. Demir
    • 1
  • N. Kenar
    • 1
  1. 1.Laser Technologies Research and Application Center University of KocaeliArslanbey Campus-Kocaeli-TURKIYE

Personalised recommendations