Advertisement

Czechoslovak Journal of Physics

, Volume 56, Supplement 2, pp B67–B72 | Cite as

Effective laser-induced removal of co-deposited layers from plasma-facing components in a tokamak

  • P. Gasior
  • A. Czarnecka
  • P. Parys
  • M. Rosinski
  • J. Wolowski
  • J. Hoffman
  • Z. Szymanski
  • V. Philipps
  • M. Rubel
Article

Abstract

An experimental set-up and spectroscopy diagnostic method for laser-induced fuel removal and decomposition of co-deposited layers on plasma-facing components from tokamaks are described. For irradiation of a graphite limiter tile from the TEXTOR tokamak Nd:YAG 3.5-ns pulse laser with a repetition rate of 10 Hz and single pulse energy of up to 0,8 J at 1,06 µm has been used. The spectroscopy system allowed recording of spectra in the visible wavelength range including CII and Dα spectral lines. The evolution of CII and Dα spectral lines was observed pulse-by-pulse during the co-deposit removal. The efficient ablation of the 45 µm thick co-deposit occured after approximately 50 laser pulses.

Key words

tokamaks laser ablation spectroscopy co-deposit removal 

References

  1. [1]
    ITER Physics Basis, Chapter 4, Nucl. Fusion 39 (1999) 2137Google Scholar
  2. [2]
    G. Federici et al.: J. Nucl. Mater. 14 (1999) 266–299Google Scholar
  3. [3]
    P. Coad, M. Rubel, C. H. Wu: J. Nucl. Mater. 408 (1997) 241–243Google Scholar
  4. [4]
    V. Philipps: Phys. Scr. T123 (2006) 24.CrossRefADSGoogle Scholar
  5. [5]
    M. Rubel et al.: Phys. Scr. T103 (2003) 20.CrossRefADSGoogle Scholar
  6. [6]
    R. D. Penzhorn et al.: J. Nucl. Mater. 288 (2001) 170CrossRefADSGoogle Scholar
  7. [7]
    P. Coad et al.: J. Nucl. Mater. 224 (2001) 290–293Google Scholar
  8. [8]
    M. Rubel et al.: J. Nucl. Mater. 321 (2003) 313–316CrossRefGoogle Scholar
  9. [9]
    C. H. Skinner et al.: J. Nucl. Mater 214 (1997) 241–243Google Scholar
  10. [10]
    P. Andrew et al.: Stork,D. (Ed.) Technical Aspects of Deuterium-Tritium Operation at JET (special issue), Fusion Eng. Des. 47 (1999).Google Scholar
  11. [11]
    W. M. Shu, Y. Kawakubo, M. F. Nishi: J. Appl. Phys. A76 (2003) 421ADSGoogle Scholar
  12. [12]
    W. M. Shu, Y. Kawakubo, K. Y. Masaki, M. F. Nishi: J. Nucl. Mater. (2003) 313–316, 584CrossRefGoogle Scholar
  13. [13]
    C. H. Skinner et al.: J. Nucl. Mater, 496 (2003) 13–316Google Scholar
  14. [14]
    C. H. Skinner et al.: Phys. Scr. T103 (2003) 34CrossRefADSGoogle Scholar
  15. [15]
    P. Gasior et al.: Phys. Scr. T123 (2006) 99CrossRefADSGoogle Scholar
  16. [16]
    F. Le Guern et al.: J. Nucl. Material, 335 (2004) 410–416CrossRefADSGoogle Scholar
  17. [17]
    M. Rubel, P. Wienhold, D. Hildebrandt: J. Nucl. Mater. 473 (2001) 290–293Google Scholar
  18. [18]
    R. W. P. McWhirter, in: Plasma Diagnostics Techniques, eds. R. H. Huddelstone and S. L. Leonard, Academic Press, New York, 1965.Google Scholar
  19. [19]
    N. Konjevic and W. L. Wiese, J. Phys. Chem. Ref. Data 19 (1990) 1307–1385ADSCrossRefGoogle Scholar
  20. [20]
    M. A. Gigosos and V. Cardeñoso, J. Phys. B: At. Mol. Opt. Phys. 29 (1996) 4795–4838CrossRefADSGoogle Scholar
  21. [21]
    H. Griem: Plasma Spectroscopy, Mc Graw-Hill Book Company, New York, 1964Google Scholar
  22. [22]
    Atomic Spectra Database; http://physics.nist.gov/PhysRefData/contents.htmlGoogle Scholar
  23. [23]
    S. S Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, C. C. Vallabhan: J. Appl. Phys. 82 (1997) 2140–2146CrossRefADSGoogle Scholar
  24. [24]
    J. Hermann, C. Vivien, A.P. Carricato, C. Boulmer-Leborgne, Appl. Surf. Science 127-129 (1998) 645–649CrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • P. Gasior
    • 1
  • A. Czarnecka
    • 1
  • P. Parys
    • 1
  • M. Rosinski
    • 1
  • J. Wolowski
    • 1
  • J. Hoffman
    • 2
  • Z. Szymanski
    • 2
  • V. Philipps
    • 3
  • M. Rubel
    • 4
  1. 1.Institute of Plasma Physics and Laser MicrofusionAssociation EURATOMWarsawPoland
  2. 2.Institute of Fundamental Technological ResearchWarsawPoland
  3. 3.Institute of Plasma Physics, Forschungszentrum JülichAssociation EURATOM-FZJJülichGermany
  4. 4.KTH, Association EURATOM-VRStockholmSweden

Personalised recommendations