Advertisement

Czechoslovak Journal of Physics

, Volume 56, Issue 1, pp 41–50 | Cite as

UV degradability of polysilanes for nanoresists examined by electron spectroscopies and photoluminescence

  • I. Kuritka
  • F. Schauer
  • P. Saha
  • J. Zemek
  • P. Jiricek
  • S. Nespurek
Article

Abstract

The aim of this study was to elucidate the degradation mechanisms in polysilanes, especially one-dimensional polysilylenes, with respect to the search for suitable resists for silicon industrial nanotechnologies. To this end we used the combined methods of photoelectron spectroscopies — PES (UPS and XPS) and photoluminescence — PL. Films of aryl-methyl-substituted polysilane chain, poly[methyl(phenyl)silylene] (PMPSi), prepared by casting from benzene solution, were analysed by X-ray and UV-induced photoelectron spectroscopy. Photoelectron spectra were recorded from the pristine PMPSi surface and after the UV photodegradation. Pronounced changes were found in the HeI induced photoelectron spectra indicating redistribution of filled Si 3s-like and Si 3p-like states. The photodegradation by UV radiation for two different degradation wavelengths λ = 266 and 355 nm was examined also by PL. We concentrated on the PL study in the region of the σ*-σ excitonic deexcitation after major degradations, studying the disorder and dangling bonds (DB) created by the degradation process. The results of both complementary methods are interpreted in accordance with our recent paper [1], with the degradation process explained by two competing phenomena, i.e. the energy dependent exciton transport by diffusion process and Si-Si bond scission.

Key words

polysilane UV degradation photoluminiscence photoelectron spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Schauer, I. Kuritka, and S. Nespurek: Polym. Degrad. Stabil. 84 (2004) 383.Google Scholar
  2. [2]
    N. Matsumoto: Jpn. J. Appl. Phys. 37 (1998) 5425.Google Scholar
  3. [3]
    F. Schauer, I. Kuritka, N. Dokoupil, and P. Horvath: Physica E 14 (2002) 272.CrossRefADSGoogle Scholar
  4. [4]
    K. Matyjaczewski, E. Fossum, and P. Miller: in The Polymeric Materials Encyclopaedia (Ed. J.C. Salamone), CRC Press, Boca Raton, 1996, 9, p. 6741.Google Scholar
  5. [5]
    S. Nespurek, W. Herden, W. Schnabel, and A. Eckhardt: Czech J. Phys. 48 (1998) 497.Google Scholar
  6. [6]
    S. Hayase: Chemtech 24 (1994) 19.Google Scholar
  7. [7]
    S. Hayase: Prog. Polym. Sci. 28 (2003) 359.CrossRefGoogle Scholar
  8. [8]
    S. Hayase, Y. Nakano, S. Yoshikawa, H. Ohta, Y. Sato, E. Shiobara, S. Miyoshi, Y. Onishi, M. Abe, H. Matsuyama, and Y. Ohiwa: Chem. Mater. 13 (2001) 2186.Google Scholar
  9. [9]
    K. Maeda, S. Seki, S. Tagawa, and H. Shibate: Rad. Phys. Chem. 60 (2001) 461.CrossRefADSGoogle Scholar
  10. [10]
    S. Seki, Y. Sakurai, K. Maeda, Y. Kunimi, and S. Tagawa: Jpn. J. Appl. Phys. 39 (2000) 4225.CrossRefGoogle Scholar
  11. [11]
    K. Navratil, J. Sik, J. Humliek, S. Nespurek: Opt. Mater. 12 (1999) 105.CrossRefGoogle Scholar
  12. [12]
    H.K. Kim and K. Matyjaszewski: J. Polym. Sci. A: Polym. Chem. 31 (1993) 299.Google Scholar
  13. [13]
    S. Seki, Y. Yoshida, S. Tagawa, and K. Asai: Macromolecules 32 (1999) 1080.Google Scholar
  14. [14]
    K. Takeda, K. Shiraishi, M. Fujiki, M. Kondo, and M. Morigaki: Phys. Rev. B 50 (1994) 5171.ADSGoogle Scholar
  15. [15]
    F. Schauer, R. Handlir, and S. Nespurek: Adv. Mater. Opt. Electron. 7 (1997) 61.CrossRefGoogle Scholar
  16. [16]
    H. Naito, S. Zhang, M. Okuda, and T. Dohmaru: J. Appl. Phys. 76 (1994) 3612.CrossRefADSGoogle Scholar
  17. [17]
    R. Handlir, F. Schauer, S. Nespurek, I. Kuritka, M. Weiter, and P. Schauer: J. Non-Cryst. Solids. 227–230 (1998) 669.Google Scholar
  18. [18]
    D.L. Staebler and C.R. Wronski: Appl. Phys. Lett. 31 (1977) 292.CrossRefADSGoogle Scholar
  19. [19]
    A. Kadashchuk, N. Ostapeno, V. Zaika, and S. Nespurek: Chem. Phys. 234 (1998) 285.CrossRefGoogle Scholar
  20. [20]
    A. Kadashchuk, S. Nespurek, N. Ostapenko, Yu. Skryshevskii, and V. Zaika: Mol. Cryst. Liq. Cryst. 355 (2001) 413.Google Scholar
  21. [21]
    Yu. Skryshevskii, N. Ostapenko, A. Kadashchuk, A. Vakhnin, and S. Suto: Mol. Cryst. Liq. Cryst. 361 (2001) 37.Google Scholar
  22. [22]
    Y. Takeda, S. Hyodo, N. Suzuki, T. Motohiro, T. Hioki, and S. Noda: J. Appl. Phys. 73 (1993) 1924.CrossRefADSGoogle Scholar
  23. [23]
    A. Kobayashi, H. Naito, Y. Matsuura, K. Matsukawa, S. Nihonyanagi, and Y. Kanemitsu: J. Non-Cryst. Solids. 299–302 (2002) 1052.Google Scholar
  24. [24]
    P. Horvath, F. Schauer, O. Salyk, I. Kuritka, S. Nespurek, J. Zemek, and V. Fidler: J. Non-Cryst. Solids. 266–269 (2000) 989.Google Scholar
  25. [25]
    R.A. Street: Hydrogenated amorphous silicon, Cambridge University Press, Cambridge, 1991.Google Scholar
  26. [26]
    B.G. Budaguan, A.A. Aivazov, M.N. Meytin, A.Yu. Sazonov, and J.W. Metselaar: Physica B: Condensed Matter 252 (1998) 198.CrossRefADSGoogle Scholar
  27. [27]
    T.J. McMahon: Solar Cells 30 (1991) 235.CrossRefGoogle Scholar
  28. [28]
    W.R. Salaneck, R. Bergman, J.-E. Sundgren, A. Rockett, T. Motooka, and J.E. Greene: Surf. Sci. 198 (1998) 461.Google Scholar
  29. [29]
    C.S. Fadley: in Electron Spectroscopy: Theory, Techniques and Applications, (Eds. C.R. Brundle and A.D. Baker), Academic, London, 1978.Google Scholar
  30. [30]
    G. Beamson and D. Briggs: High Resolution XPS of Organic Polymers, The Scienta ESCA 300 Database. John Wiley & Sons, Chichester, 1992.Google Scholar
  31. [31]
    K. Takeda, K. Shiraishi, M. Fujiki, M. Kondo, and M. Morigaki: Phys. Rev. B 50 (1994) 5171.ADSGoogle Scholar
  32. [32]
    N. Ostapenko, G. Telbiz, V. Ilyin, S. Suto, and A. Watanabe: Chem. Phys. Lett. 383 (2004) 456.CrossRefGoogle Scholar
  33. [33]
    Y. Nakayama, H. Inagi, and M. Zhang: J. Appl. Phys. 86 (1999) 768.CrossRefADSGoogle Scholar
  34. [34]
    F. Yonezawa and M.H. Cohen: in Theory of Electronic Properties of Amorphous Semiconductors (Ed. F. Yonezawa), Fundamental Physics of Amorphous Semiconductors. Springer Verlag, Berlin, 1981, p. 119.Google Scholar
  35. [35]
    T. Kanai, S. Furukawa, Y. Maeda, Y. Hayashi, K. Oka, T. Dohmaru, and R. West: J. Phys. Cond. Matter. 10 (1998) 883.CrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • I. Kuritka
    • 1
  • F. Schauer
    • 1
  • P. Saha
    • 1
  • J. Zemek
    • 2
  • P. Jiricek
    • 2
  • S. Nespurek
    • 3
  1. 1.Polymer Centre, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  2. 2.Institute of PhysicsAcad. Sci. CRPraha 6Czech Republic
  3. 3.Institute of Macromolecular ChemistryAcad. Sci. CRPraha 6Czech Republic

Personalised recommendations