Czechoslovak Journal of Physics

, Volume 55, Issue 9, pp 1063–1066

About fractional supersymmetric quantum mechanics

  • Dumitru Baleanu
  • Sami I. Muslih
Article

Abstract

Fractional Euler-Lagrange equations are investigated in the presence of Grassmann variables. The fractional Hamiltonian and the path integral of the fractional supersymmetric classical model are constructed.

Key words

fractional calculus Grassmann variables 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K.B. Oldham and J. Spanier: The Fractional Calculus, Academic Press, New York, 1974.Google Scholar
  2. [2]
    R. Hilfer: Applications of Fraction Calculus in Physics, World Scientific Publishing Company, Singapore-New Jersey-London-Hong Kong, 2000.Google Scholar
  3. [3]
    G. M. Zaslavsky: Phys. Rep. 371 (2002) 461.CrossRefADSMATHMathSciNetGoogle Scholar
  4. [4]
    C.F. Lorenzo and T.T. Hartley: Nonlinear Dynamics 38 (2004) 23.CrossRefMathSciNetGoogle Scholar
  5. [5]
    F.X. Chang, J. Chen, and W. Huang: Acta Physica Sinica 54 (2005) 1113.Google Scholar
  6. [6]
    N. Heymans: Nonlinear Dynamics 38 (2004) 221.CrossRefGoogle Scholar
  7. [7]
    N. Laskin: Phys. Lett. A 268 (2000) 298.CrossRefADSMATHMathSciNetGoogle Scholar
  8. [8]
    S.C. Lim and S.V. Muniady: Phys. Lett. A 324 (2004) 396.CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    F. Riewe: Phys. Rev. E 53 (1996) 1890.CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    F. Riewe: Phys. Rev. E 55 (1997) 3581.CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    M. Klimek: Czech. J. Phys. 51 (2001) 1348.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    M. Klimek: Czech. J. Phys. 52 (2002) 1247.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    O.P. Agrawal: J. Math. Anal. Appl. 272 (2002) 368.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    D. Baleanu and T. Avkar: Nuovo Cimento B 119 (2004) 73.ADSGoogle Scholar
  15. [15]
    S. Muslih and D. Baleanu: Czech. J. Phys. 55 (2005) 633.Google Scholar
  16. [16]
    S. Muslih and D. Baleanu: J. Math. Ann. Appl. 304 (2005) 599.MathSciNetGoogle Scholar
  17. [17]
    D. Baleanu and S. Muslih: Physica Scripta 72 (2005) 119.MathSciNetGoogle Scholar
  18. [18]
    E. Witten: Nucl. Phys. B 188 (1981) 513.CrossRefADSGoogle Scholar
  19. [19]
    A. Lahiri, P.K. Roy, and B. Bagchi: Int. J. Mod. Phys. Lett. A 5 (1990) 1383.MathSciNetGoogle Scholar
  20. [20]
    S. Durand: Phys. Lett. B 312 (1993) 115.ADSMathSciNetGoogle Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2005

Authors and Affiliations

  • Dumitru Baleanu
    • 1
    • 3
  • Sami I. Muslih
    • 2
  1. 1.Department of Mathematics and Computer Sciences, Faculty of Arts and SciencesCankaya UniversityAnkaraTurkey
  2. 2.Department of PhysicsAl-Azhar UniversityGazaPalestine
  3. 3.Institute of Space SciencesMagurele-BucharestRomania

Personalised recommendations