Czechoslovak Journal of Physics

, Volume 55, Issue 7, pp 893–911 | Cite as

Zero-field and in-field Mössbauer spectroscopy as a tool for structural and magnetic characterization of maghemite (γ-Fe2O3) nanoparticles

  • J. Tuček
  • R. Zboril


Nowadays, nanoparticles of maghemite (γ-Fe2O3) represent one of the most useful materials in modern advanced nanotechnological applications due to their superior magnetic properties. For their characterization,57Fe zero-field and in-field Mössbauer spectroscopy have proved themselves to be very powerful and effective tools which are crucial for an investigation of the local surrounding of iron atoms and observation of dynamic effects. The structural and magnetic characteristics of maghemite and its nanoparticles are thus discussed with regard to their zero-field and in-field Mössbauer spectra recorded at various temperatures and applied external magnetic fields. In addition, a special attention is also devoted to remarkable physical phenomena (superparamagnetism, spin canting) occurring largely in maghemite nanosized particles.


76.80.+y 75.75.+a 

Key words

maghemite γ-Fe2O3 zero-field and in-field Mössbauer spectroscopy superparamagnetism spin canting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Zboril, M. Mashlan, L. Machala, and P. Bezdicka: inMaterial Research in Atomic Scale by Mössbauer Spectroscopy, Series II: Mathematics, Physics and Chemistry, Vol. 94 (Editors M. Mashlan, M. Miglierini, and P. Schaaf). Kluwer Academic Publishers, Dordrecht, 2003, p. 21.Google Scholar
  2. [2]
    R. Zboril, M. Mashlan, and D. Petridis: Chem. Mater.14 (2002) 969.CrossRefGoogle Scholar
  3. [3]
    J. Ensling, P. Gütlich, R. Klinger, W. Meisel, H. Jachow, and E. Schwab: Hyperfine Interact.111 (1998) 143.CrossRefADSGoogle Scholar
  4. [4]
    G. Ennas, G. Marongiu, A. Musinu, A. Falqui, P. Ballviano, and R. Caminiti: J. Mater. Res.14 (1999) 1570.ADSCrossRefGoogle Scholar
  5. [5]
    X.W. Teng, D. Black, N.J. Watkins, Y.L. Gao, and H. Yang: Nano Lett.3 (2003) 261.CrossRefADSGoogle Scholar
  6. [6]
    J. Depeyrot, E.C. Sousa, R. Aquino, F.A. Tourinho, E. Dubois, J.-C. Bacri, and R. Perzynski: J. Magn. Magn. Mater.252 (2000) 375.CrossRefADSGoogle Scholar
  7. [7]
    T. Liu, L. Guo, Y. Tao, Y.B. Wang, and W.D. Wang: Nanostruct. Mater.11 (1999) 487.CrossRefGoogle Scholar
  8. [8]
    S.W. Tao, X.Q. Liu, X.F. Chu, and Y.S. Shen: Sensor. Actuat. B — Chem.61 (1999) 33.CrossRefGoogle Scholar
  9. [9]
    M.Z. Zayat, F. del Monte, M.P. Morales, G. Rosa, H. Guerrero, C.J. Serna, and D. Levy: Adv. Mater.15 (2003) 1809.CrossRefGoogle Scholar
  10. [10]
    J. Tejada, R.F. Ziolo, and X.X. Zhang: Chem. Mater.8 (1996) 1784.CrossRefGoogle Scholar
  11. [11]
    D.G. Mitchell: J. Magn. Reson. Imaging7 (1997) 1.CrossRefGoogle Scholar
  12. [12]
    S. Grimm, M. Schultz, S. Barth, and R. Müller: J. Mater. Sci.32 (1997) 1083.CrossRefGoogle Scholar
  13. [13]
    S.H. Yun, C.W. Lee, J.S. Lee, C.W. Seo, and E.K. Lee: Mater. Sci. Forum449 (2004) 1033.Google Scholar
  14. [14]
    R.D. McMichael, R.D. Schull, L.J. Swartzendruber, L.H. Bennett, and R.E. Watson: J. Magn. Magn. Mater.111 (1992) 29.CrossRefADSGoogle Scholar
  15. [15]
    L. Josephson, C.H. Tsung, A. Moore, and R. Weissleder: Bioconjugate Chem.10 (1999) 186.CrossRefGoogle Scholar
  16. [16]
    H. Nagano, Y. Machida, M. Iwata, T. Imada, Y. Noguchi, A. Matsumoto, and T. Nagai: Int. J. Pharm.147 (1997) 119.CrossRefGoogle Scholar
  17. [17]
    K.M. Spiers, J.D. Cashion, and K.A. Gross: Key Eng. Mat.254 (2004) 213.CrossRefGoogle Scholar
  18. [18]
    O. Bomatí-Miquel, M.P. Morales, C.J. Serna, and S. Veintemillas-Verdaguer: IEEE T. Magn.38 (2002) 2616.CrossRefADSGoogle Scholar
  19. [19]
    J.R. Jeong, S.J. Lee, J.D. Kim, and S.C. Shin: Phys. Status Solidi B241 (2004) 1593.CrossRefADSGoogle Scholar
  20. [20]
    C. Pascal, J.L. Pascal, F. Favier, M.L. Elidrissi Moubtassim, and C. Payen: Chem. Mater.11 (1999) 141.CrossRefGoogle Scholar
  21. [21]
    L. Zhang, G.C. Papaeftymiou, and J.Y. Ying: J. Appl. Phys.84 (1997) 6892.CrossRefADSGoogle Scholar
  22. [22]
    C. Cannas, G. Concas, D. Gatteschi, A. Musinu, G. Piccaluga, and C. Sangregorio: J. Mater. Chem.12 (2002) 3141.CrossRefGoogle Scholar
  23. [23]
    S.Y. Lin, J. Ferg, P. Biswas, R. Enzweiler, and P. Boolchand: J. Magn. Magn. Mater.159 (1996) 405.CrossRefGoogle Scholar
  24. [24]
    M.J. Tueros, L.A. Baum, R.A. Borzi, S.J. Stewart, R.C. Mercader, S.G. Marchetti, J.F. Bengoa, and L.V. Mogni: Hyperfine Interact.148 (2003) 103.CrossRefADSGoogle Scholar
  25. [25]
    N. Randrianantoandro, A.M. Mercier, M. Hervieu, and J.-M. Grenèche: Mater. Lett.47 (2001) 150.CrossRefGoogle Scholar
  26. [26]
    T. Tepper, C.A. Ross, and G.F. Dionne: IEEE Trans. Magn.40 (2004) 1685.CrossRefADSGoogle Scholar
  27. [27]
    T. Nomizu, K. Yamamoto, and M. Watanabe: Anal. Sci.17 (2001) i177.Google Scholar
  28. [28]
    K.V.P.M. Shafi, A. Ulman, A. Dyal, X.Z. Yan, N.L. Yang, C. Estournès, L. Fournes, A. Wattiaux, H. White, and M. Rafailovich: Chem. Mater.14 (2002) 1778.CrossRefGoogle Scholar
  29. [29]
    D. Vollath, D.V. Szabó, R.D. Taylor, J.O. Willis, and K.E. Sickafus: Nanostruct. Mater.6 (1995) 941.CrossRefGoogle Scholar
  30. [30]
    A. Lopéz, F.J. Lázaro, T. González-Carreño, M.P. Morales, and C.J. Serna: J. Magn. Magn. Mater.140–144 (1995) 383.CrossRefGoogle Scholar
  31. [31]
    F. Montagne, O. Mondain-Monval, C. Pichot, H. Mozzanega, and A. Elaïssari: J. Magn. Magn. Mater.250 (2002) 302.CrossRefADSGoogle Scholar
  32. [32]
    S. Nasrazadani and A. Raman: Corros. Sci.34 (1993) 1355.CrossRefGoogle Scholar
  33. [33]
    J.D. Fabris, M.F. de Jesus Filho, J.M.D. Coey, W. da N. Mussel, and A.T. Goulart: Hyperfine Interact.110 (1997) 23.CrossRefADSGoogle Scholar
  34. [34]
    M.P. Morales, C. Pecharroman, T. González-Carreño, and C.J. Serna: J. Solid State Chem.108 (1994) 158.CrossRefADSGoogle Scholar
  35. [35]
    E. Tronc, A. Ezzir, R. Cherkaoui, C. Chanéac, M. Noguès, H. Kachkachi, D. Fiorani, A.M. Tesla, J.-M. Grenèche, and J.P. Jolivet: J. Magn. Magn. Mater.221 (2000) 63.CrossRefADSGoogle Scholar
  36. [36]
    F.J. Berry and Ö. Helgason: Hyperfine Interact.126 (2000) 269.CrossRefADSGoogle Scholar
  37. [37]
    G. Schimanke and M. Martin: Solid State Ionics136 (2000) 1235.CrossRefGoogle Scholar
  38. [38]
    M. Macias, J. Morales, J.L. Tirado, and C. Valera: Thermochim. Acta133 (1988) 106.CrossRefGoogle Scholar
  39. [39]
    E. McClelland and C. Goss: Geophys. J. Int.112 (1993) 517.CrossRefADSGoogle Scholar
  40. [40]
    E. Tronc, C. Chanéac, and J.P. Jolivet: J. Solid State Chem.139 (1998) 93.CrossRefADSGoogle Scholar
  41. [41]
    R. Zboril, M. Mashlan, K. Barcova, and M. Vujtek: Hypefine Interact.139/140 (2002) 597.CrossRefGoogle Scholar
  42. [42]
    R.H. Kodama: J. Magn. Magn. Mater.200 (1999) 359.CrossRefADSGoogle Scholar
  43. [43]
    M.D. Mukadam, S.M. Yusuf, P. Sharma, and S.K. Kulshreshtha: J. Magn. Magn. Mater.272–276 (2004) 1401.CrossRefGoogle Scholar
  44. [44]
    O. Iglesias and A. Labarta: Physica B343 (2004) 286.CrossRefADSGoogle Scholar
  45. [45]
    O. Iglesias and A. Labarta: Phys. Rev. B63 (2001) 184416.CrossRefADSGoogle Scholar
  46. [46]
    D. Fiorani, A.M. Tesla, F. Lucari, F. D’Orazio, and H. Romero: Physica B320 (2002) 122.CrossRefADSGoogle Scholar
  47. [47]
    M.P. Morales, M.J. Munoz-Aguado, J.L. Garcia-Palacios, F.J. Lázaro, and C.J. Serna: J. Magn. Magn. Mater.183 (1999) 232.CrossRefADSGoogle Scholar
  48. [48]
    J.-S. Jung, K.-H. Choi, Y.-K. Jung, S.H. Lee, V.O. Golub, L. Malkinski, and C.J. O’Connor: J. Magn. Magn. Mater.272–276 (2004) e1157.Google Scholar
  49. [49]
    R.H. Kodama, S.A. Makhlouf, and A.E. Berkowitz: Phys. Rev. Lett.79 (1997) 1393.CrossRefADSGoogle Scholar
  50. [50]
    R.H. Kodama and A.E. Berkowitz: Phys. Rev. B59 (1999) 13584.CrossRefGoogle Scholar
  51. [51]
    W.T. Coffey: inAdvances in Chemical Physics, Vol. 103 (Editors I. Prigogine and S.A. Rice). Wiley, New York, 1999, p. 259.Google Scholar
  52. [52]
    L. Lopez-Diaz and L. Torres: Phys. Rev. B65 (2002) 224406.CrossRefADSGoogle Scholar
  53. [53]
    R. Berger, J.-C. Bissey, J. Kliava, H. Daubric, and C. Estournès: J. Magn. Magn. Mater.234 (2001) 535.CrossRefADSGoogle Scholar
  54. [54]
    G.M. da Costa, E. De Grave, and R.E. Vandenberghe: Hyperfine Interact.117 (1998) 207.CrossRefADSGoogle Scholar
  55. [55]
    S.J. Oh, D.C. Cook, and H.E. Townsend: Hyperfine Interact.112 (1998) 59.CrossRefADSGoogle Scholar
  56. [56]
    S. Mørup and H. Tøpsoe: Appl. Phys.11 (1976) 63.CrossRefADSGoogle Scholar
  57. [57]
    S. Mørup: J. Magn. Magn. Mater.37 (1983) 39.CrossRefADSGoogle Scholar
  58. [58]
    J. van Lierop and D.H. Ryan: Phys. Rev. Lett.85 (2000) 3021.CrossRefADSGoogle Scholar
  59. [59]
    O. Jarjayes and P. Auric: J. Magn. Magn. Mater.138 (1994) 115.CrossRefADSGoogle Scholar
  60. [60]
    J.R. Armstrong, A.H. Morrish, and G.A. Sawatzky: Phys. Lett.23 (1966) 414.CrossRefADSGoogle Scholar
  61. [61]
    J.M.D. Coey: Phys. Rev. Lett.27 (1971) 1140.CrossRefADSGoogle Scholar
  62. [62]
    A.H. Morrish and K. Haneda: J. Magn. Magn. Mater.15–18 (1980) 1089.CrossRefGoogle Scholar
  63. [63]
    A.H. Morrish and K. Haneda: J. Magn. Magn. Mater.35 (1983) 105.CrossRefADSGoogle Scholar
  64. [64]
    R.J. Pollard: J. Phys. — Condens. Matt.2 (1990) 983.CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    E. Tronc, P. Prené, J.P. Jolivet, J.L. Dormann, and J.-M. Grenèche: Hyperfine Interact.112 (1997) 97.CrossRefADSGoogle Scholar
  66. [66]
    A.G. Maddock:Mössbauer Spectroscopy: Principles and Applications of The Techniques. Horwood Publishing, Ltd., Albion, 1998.Google Scholar
  67. [67]
    J.L. Dormann, D. Fiorani, and E. Tronc: inAdvances in Chemical Physics, Vol. 98 (Editors I. Prigogine and S.A. Rice). Wiley, New York, 1997, p. 283.CrossRefGoogle Scholar
  68. [68]
    J.-M. Grenèche: inMaterial Research in Atomic Scale by Mössbauer Spectroscopy, Series II: Mathematics, Physics and Chemistry, Vol. 94 (Editors M. Mashlan, M. Miglierini, and P. Schaaf). Kluwer Academic Publishers, Dordrecht, 2003, p. 83.Google Scholar
  69. [69]
    J.-M. Grenèche: Hyperfine Interact.148/149 (2003) 79.CrossRefGoogle Scholar
  70. [70]
    Q.A. Pankhurst and R.J. Pollard: Phys. Rev. Lett.67 (1991) 248.CrossRefADSGoogle Scholar
  71. [71]
    F.T. Parker, M.W. Foster, D.T. Margulies, and A.E. Berkowitz: Phys. Rev. B47 (1993) 7885.CrossRefADSGoogle Scholar
  72. [72]
    S. Linderoth, P.V. Hendriksen, F. Bødker, S. Wells, K. Davies, S.W. Charles, and S. Mørup: J. Appl. Phys.75 (1994) 6583.CrossRefADSGoogle Scholar
  73. [73]
    P.V. Hendriksen, S. Linderoth, C.A. Oxborrow, and S. Mørup: J. Phys. — Condens. Matt.6 (1994) 3091.CrossRefADSGoogle Scholar
  74. [74]
    M.P. Morales, C.J. Serna, F. Bødker, and S. Mørup: J. Phys. — Condens. Matt.9 (1997) 5461.CrossRefADSGoogle Scholar
  75. [75]
    C.J. Serna, F. Bodker, S. Mørup, M.P. Morales, F. Sandiumenge, and S. Veintemillas-Verdaguer: Solid State Commun.118 (2001) 437.CrossRefADSGoogle Scholar
  76. [76]
    M.P. Morales, S. Veintemillas-Verdaguer, M.I. Montero, C.J. Serna, A. Roig, L. Casas, B. Martinez, and F. Sandiumenge: Chem. Mater.11 (1999) 3058.CrossRefGoogle Scholar
  77. [77]
    J.L. Dormann, R. Cherkaoui, L. Spinu, M. Noguès, F. Lucari, F. D’Orazio, D. Fiorani, A. Garcia, E. Tronc, and J.P. Jolivet: J. Magn. Magn. Mater.187 (1998) L139.Google Scholar
  78. [78]
    J.L. Dormann, D. Fiorani, R. Cherkaoui, L. Spinu, F. Lucari, F. D’Orazio, M. Noguès, E. Tronc, J.P. Jolivet, and A. Garcia: Nanostruct. Mater.12 (1999) 757.CrossRefGoogle Scholar
  79. [79]
    P.M.A. de Bakker, E. De Grave, R.E. Vandenberghe, L.H. Bowen, R.J. Pollard, and R.M. Persoons: Phys. Chem. Miner.18 (1991) 131.CrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Acad. Sci. CR 2005

Authors and Affiliations

  • J. Tuček
    • 1
  • R. Zboril
    • 2
  1. 1.Department of Experimental PhysicsPalacky UniversityOlomoucCzech Republic
  2. 2.Department of Physical ChemistryPalacky UniversityOlomoucCzech Republic

Personalised recommendations