Language Resources and Evaluation

, Volume 46, Issue 3, pp 449–459 | Cite as

IPLR: an online resource for Greek word-level and sublexical information

  • Athanassios Protopapas
  • Marina Tzakosta
  • Aimilios Chalamandaris
  • Pirros Tsiakoulis
Original Paper

Abstract

We present a new online psycholinguistic resource for Greek based on analyses of written corpora combined with text processing technologies developed at the Institute for Language & Speech Processing (ILSP), Greece. The “ILSP PsychoLinguistic Resource” (IPLR) is a freely accessible service via a dedicated web page, at http://speech.ilsp.gr/iplr. IPLR provides analyses of user-submitted letter strings (words and nonwords) as well as frequency tables for important units and conditions such as syllables, bigrams, and neighbors, calculated over two word lists based on printed text corpora and their phonetic transcription. Online tools allow retrieval of words matching user-specified orthographic or phonetic patterns. All results and processing code (in the Python programming language) are freely available for noncommercial educational or research use.

Keywords

Online resources Text corpora Sublexical variables Psycholinguistics Greek Syllabification Bigrams 

References

  1. Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX lexical database (CD-ROM). University of Pennsylvania, Philadelphia: Linguistic Data Consortium.Google Scholar
  2. Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K., Kessler, B.,Loftis, B., et al. (2007). The English lexicon project. Behavior Research Methods, 39, 445–459CrossRefGoogle Scholar
  3. Barca, L., Burani, C., & Arduino, L. S. (2002). Word naming times and psycholinguistic norms for Italian nouns. Behavior Research Methods, Instruments & Computers, 34, 424–434.CrossRefGoogle Scholar
  4. Chalamandaris, A., Raptis, S., & Tsiakoulis, P. (2005). Rule-based grapheme-to-phoneme method for the Greek. In Inter speech 2005 (pp. 2937–2940).Google Scholar
  5. Coltheart, M., Davelaar, E., Jonasson, J. T., & Besner, D. (1977). Access to the internal lexicon. In S. Dornic (Ed.), Attention and performance VI (pp. 535–555). Hillsdale, NJ: Erlbaum.Google Scholar
  6. Conrad, M., Carreiras, M., & Jacobs, A. M. (2008). Contrasting effects of token and type syllable frequency in lexical decision. Language and Cognitive Processes, 23, 296–326. doi:10.1080/01690960701571570.CrossRefGoogle Scholar
  7. Fourakis, M., Botinis, A., & Nirgianaki, E. (2003). Hroniká haraktiristiká ton simfonikón akolouthión [ps], [ts], kai [ks] stin ellinikí [Temporal characteristics of [ps], [ts], and [ks] consonant sequences in Modern Greek]. In Proceedings of the 6th international conference on Greek linguistics (ICGL6), Rethimno, Greece, September 18–21.Google Scholar
  8. Gomes, I., & Castro, S. L. (2003). Porlex, a lexical database in European Portuguese. Psychologica, 32, 91–108.Google Scholar
  9. Hatzigeorgiu, N., Gavrilidou, M., Piperidis, S., Carayannis, G., Papakostopoulou, A., Spiliotopoulou, A., et al. (2000). Design and implementation of the online ILSP corpus. In Proceedings of the 2nd international conference of language resources and evaluation (LREC) (Vol. 3, pp. 1737-1740), Athens, Greece.Google Scholar
  10. Hofmann, M. J., Stenneken, P., Conrad, M., & Jacobs, A. M. (2007). Sublexical frequency measures for orthographic and phonological units in German. Behavior Research Methods, 39, 620–629.CrossRefGoogle Scholar
  11. Ktori, M., van Heuven, W. J. B., & Pitchford, N. J. (2008). GreekLex: A lexical database of Modern Greek. Behavior Research Methods, 30(3), 773–783.CrossRefGoogle Scholar
  12. Lambert, E., & Chesnet, D. (2001). Novlex: Une base de donneés lexicales pour les élèves de primaire. L’Année Psychologique, 101, 277–288.CrossRefGoogle Scholar
  13. Laudanna, A., Thornton, A. M., Brown, G., Burani, C., & Marconi, L. (1995). Un corpus dell’italiano scritto contemporaneo dalla parte del ricevente. In S. Bolasco, L. Lebart, & A. Salem (Eds.), III giornate internazionali di analisi statistica dei dati testuali (Vol. I, pp. 103–109). Roma, Italy: Cisu.Google Scholar
  14. Lété, B., Sprenger-Charolles, L., & Colé, P. (2004). MANULEX: A grade-level lexical database from French elementary-school readers. Behavior Research Methods, Instruments, & Computers, 36, 156–166.CrossRefGoogle Scholar
  15. New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French lexical database. Behavior Research Methods, Instruments, & Computers, 36, 516–524.CrossRefGoogle Scholar
  16. Peereman, R., Lété, B. B., & Sprenger-Charolles, L. (2007). Manulex-Infra: Distributional characteristics of grapheme-phoneme mappings, infra-lexical and lexical units in child-directed written material. Behavior Research Methods, 39, 579–589.CrossRefGoogle Scholar
  17. Petrounias, E. V. (2002). Neoellinikí grammatikí kai sigkritikí análisi, tómos A: Fonitikí kai eisagogí sti fonología [Modern Greek grammar and comparative analysis, Vol A: Phonetics and introduction to phonology]. Thessaloniki: Ziti.Google Scholar
  18. Protopapas, A. (2006). On the use and usefulness of stress diacritics in reading Greek. Reading & Writing: An Interdisciplinary Journal, 19(2), 171–198.CrossRefGoogle Scholar
  19. Protopapas, A., & Vlahou, E. L. (2009). A comparative quantitative analysis of Greek orthographic transparency. Behavior Research Methods, 41, 991–1008CrossRefGoogle Scholar
  20. Revithiadou, A. (1999). Headmost accent wins: Head dominance and ideal prosodic form in lexical accent systems. LOT Dissertation Series 15 (HIL/Leiden University). The Hague: Holland Academic Graphics. (Available from http://www.roa.rutgers.edu)
  21. Rinaldi, P., Barca, L., & Burani, C. (2004). A database for semantic, grammatical and frequency properties of the first words acquired by Italian children. Behavior Research Methods, Instruments & Computers, 36, 525–530.CrossRefGoogle Scholar
  22. Selkirk, E. (1984). Phonology and syntax: The relation between sound and structure. Cambridge, MA: MIT Press.Google Scholar
  23. Spencer, K. A. (2009). Feedforward, -backward and neutral transparency measures for British English. Behavior Research Methods, 41, 220–227.CrossRefGoogle Scholar
  24. Spencer, K. A. (2010). Predicting children’s word-reading accuracy for common English words: The effect of word transparency and complexity. British Journal of Psychology 101(3), 519–543. doi:10.1348/000712609X470752.Google Scholar
  25. Tzakosta, M., & Karra, A. (2007). A typological and comparative account of CL and CC clusters in Greek dialects. In 3rd International conference on Modern Greek dialects and linguistic theory, University of Cyprus, June 14–16.Google Scholar
  26. Tzakosta, M., & Vis, J. (2007). Phonological representations of consonant sequences: the case of affricates vs. ‘true’ clusters. In 8th International conference on Greek Linguistics, University of Ioannina, August 30–September 2.Google Scholar
  27. Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin & Review, 15(5), 971–979.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Athanassios Protopapas
    • 1
  • Marina Tzakosta
    • 2
  • Aimilios Chalamandaris
    • 1
  • Pirros Tsiakoulis
    • 1
  1. 1.Institute for Language and Speech ProcessingMaroussiGreece
  2. 2.University of CreteRethymnoGreece

Personalised recommendations