Language Resources and Evaluation

, Volume 44, Issue 3, pp 221–261 | Cite as

The MATCH corpus: a corpus of older and younger users’ interactions with spoken dialogue systems

  • Kallirroi GeorgilaEmail author
  • Maria Wolters
  • Johanna D. Moore
  • Robert H. Logie


We present the MATCH corpus, a unique data set of 447 dialogues in which 26 older and 24 younger adults interact with nine different spoken dialogue systems. The systems varied in the number of options presented and the confirmation strategy used. The corpus also contains information about the users’ cognitive abilities and detailed usability assessments of each dialogue system. The corpus, which was collected using a Wizard-of-Oz methodology, has been fully transcribed and annotated with dialogue acts and “Information State Update” (ISU) representations of dialogue context. Dialogue act and ISU annotations were performed semi-automatically. In addition to describing the corpus collection and annotation, we present a quantitative analysis of the interaction behaviour of older and younger users and discuss further applications of the corpus. We expect that the corpus will provide a key resource for modelling older people’s interaction with spoken dialogue systems.


Spoken dialogue corpora Spoken dialogue systems Cognitive ageing Annotation Information states Speech acts User simulations Speech recognition 



We would like to thank Neil Mayo and Joe Eddy for coding the WOz interface, Neil Mayo for technical help with the experiment, Vasilis Karaiskos for administering the spoken dialogue experiment, Melissa Kronenthal for transcribing all 447 dialogues, Martin Tietze for helping evaluate the annotation scheme, Matt Watson for scheduling participants, administering the cognitive test battery, and data entry, Ravichander Vipperla for providing the screen shots of the WOz interface, and Mark Core for feedback on the dialogue act scheme. We also thank the anonymous reviewers for their helpful comments.


  1. Anderson, S., Liberman, N., Bernstein, E., Foster, S., Cate, E., Levin, B., & Hudson, R. (1999). Recognition of elderly speech and voice-driven document retrieval. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (pp. 145–148). Phoenix, AZ, USA.Google Scholar
  2. Arking, R. (2005). Biology of aging 3rd edn. New York, NY, USA: Oxford University Press.Google Scholar
  3. Aylett, M., Pidcock, C., & Fraser, M. (2006). The Cerevoice Blizzard Entry 2006: A prototype database unit selection engine. In: Proceedings of the 2nd BLIZZARD challenge. Pittsburgh, PA, USA.Google Scholar
  4. Baba, A., Yoshizawa, S., Yamada, M., Lee, A., & Shikano, K. (2002). Elderly acoustic models for large vocabulary continuous speech recognition. Transactions of the Institute of Electronics, Information and Communication Engineers, D-II J85D-II, 390–397.Google Scholar
  5. Baba, A., Yoshizawa, S., Yamada, M., Lee, A., & Shikano, K. (2004). Acoustic models of the elderly for large-vocabulary continuous speech recognition. Electronics and Communications in Japan, Part 2 (Electronics), 87, 49–57.CrossRefGoogle Scholar
  6. Baber, C., Mellor B., Graham, R., Noyes, J. M., & Tunley, C. (1996). Workload and the use of automatic speech recognition: The effects of time and resource demands. Speech Communication, 20, 37–53.CrossRefGoogle Scholar
  7. Baeckman, L., Small, B. J., & Wahlin, A. (2001). Aging and memory: Cognitive and biological perspectives. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (pp. 349–377). San Diego, CA, USA: Academic Press.Google Scholar
  8. Bailey, P. E., & Henry, J. D. (2008). Growing less empathic with age: Disinhibition of the self-perspective. Journals of Gerontology Series B–Psychological Sciences and Social Sciences, 63(4), 219–226.Google Scholar
  9. Baltes, P., & Baltes, M. M. (1990). Psychological perspectives on successful aging: The model of selective optimization with compensation. In P. B. Baltes & M. M. Baltes (Eds.), Successful aging: perspectives from the behavioral sciences (pp. 1–34). Cambridge, UK: Cambridge University Press.Google Scholar
  10. Bickmore, T., & Giorgino, T. (2006). Health dialog systems for patients and consumers. Journal of Biomedical Informatics, 39, 556–571.CrossRefGoogle Scholar
  11. Black, A., Eskenazi, M., & Simmons, R. (2002). Elderly perception of speech from a computer. In: Meeting of the acoustical society of America. Pittsburgh, PA, USA.Google Scholar
  12. Black, L. A., McMeel, C., McTear, M., Black, N., Harper, R., & Lemon, M. (2005a). Implementing autonomy in a diabetes management system. Journal of Telemedicine and Telecare, 11(Suppl 1), 6–8.CrossRefGoogle Scholar
  13. Black, L. A., McTear, M., Black, N., Harper, R., & Lemon, M. (2005b). Evaluating the DI@L-log system on a cohort of elderly, diabetic patients: Results from a preliminary study. In: Proceedings of Interspeech (pp. 821–824). Lisbon, Portugal.Google Scholar
  14. Bohus, D., & Rudnicky, A. (2005). Sorry, I didn’t catch that!—An investigation of non-understanding errors and recovery strategies. In: Proceedings of the 5th SIGdial workshop (pp. 128–143). Lisbon, Portugal.Google Scholar
  15. Burke, D. M., & Shafto, M. A. (2004). Aging and language production. Current Directions in Psychological Science, 13(1), 21–24.CrossRefGoogle Scholar
  16. Carletta, J. (1996). Assessing agreement on classification tasks: The kappa statistic. Computational Linguistics, 22(2), 249–254.Google Scholar
  17. Carletta, J. (2007). Unleashing the killer corpus: Experiences in creating the multi-everything AMI meeting corpus. Language Resources and Evaluation, 41(2), 181–190.CrossRefGoogle Scholar
  18. Carletta, J., Evert, S., Heid, U., Kilgour, J., Robertson, J., & Voormann, H. (2003). The NITE XML toolkit: Flexible annotation for multi-modal language data. Behavior Research Methods, Instruments, and Computers, 35(3), 353–363.Google Scholar
  19. Caruso, A. J., McClowry, M. T., & Max, L. (1997). Age-related effects on speech fluency. Semin Speech Lang, 18, 171–179.CrossRefGoogle Scholar
  20. Catizone, R., Dingli, A., Pinto, H., & Wilks, Y. (2008). Information extraction tools and methods for understanding dialogue in a companion. In: Proceedings of the 6th international conference on language resources and evaluation (LREC). Marrakech, Morocco.Google Scholar
  21. Chu-Carroll, J., & Nickerson, J. S. (2000). Evaluating automatic dialogue strategy adaptation for a spoken dialogue system. In: Proceedings of the annual meeting of the north American chapter of the association for computational linguistics (NAACL) (pp. 202–209). Seattle, WA, USA.Google Scholar
  22. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.CrossRefGoogle Scholar
  23. Commarford, P. (2006). Working memory, search, and signal detection: Implications for interactive voice response system menu design. PhD thesis, Florida, USA: University of Central Florida.Google Scholar
  24. Cucchiarini, C., van Hamme, H., van Herwijnen, O., & Smits, F. (2006). JASMIN-CGN: Extension of the spoken Dutch corpus with speech of elderly people, children and non-natives in the human–machine interaction modality. In: Proceedings of the 5th international conference on language resources and evaluation (LREC) (pp. 135–138). Genoa, Italy.Google Scholar
  25. Cucchiarini, C., Driese, J., van Hamme, H., & Sanders, E. (2008). Recording speech of children, non-natives and elderly people for HLT applications: The JASMIN-CGN corpus. In: Proceedings of the 6th international conference on language resources and evaluation (LREC). Marrakech, Morocco.Google Scholar
  26. Czaja, S., & Lee, C. (2007). The impact of aging on access to technology. Universal Access in the Information Society, 5, 341–349.CrossRefGoogle Scholar
  27. Czaja, S. J., Charness, N., Fisk, A. D., Hertzog, C., Nair, S. N., Rogers, W. A., & Sharit, J. (2006). Factors predicting the use of technology: Findings from the center for research and education on aging and technology enhancement (CREATE). Psychology and Aging, 21, 333–352.CrossRefGoogle Scholar
  28. Dahlbaeck, N., Joensson, A., & Ahrenberg, L. (1993). Wizard of Oz studies—why and how. Knowledge-Based Systems, 6, 258–266.CrossRefGoogle Scholar
  29. Duffy, S., & Pisoni, D. (1992). Comprehension of synthetic speech produced by rule: A review and theoretical interpretation. Language and Speech, 35, 351–389.Google Scholar
  30. Dulude, L. (2002). Automated telephone answering systems and aging. Behaviour & Information Technology, 21, 171–184.CrossRefGoogle Scholar
  31. Eskenazi, M., & Black, A. (2001). A study on speech over the telephone and aging. In: Proceedings of Eurospeech. Aalborg, Denmark.Google Scholar
  32. Fozard, J.L., & Gordon-Salant, S. (2001). Changes in vision and hearing with aging. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (pp. 241–266). San Diego, CA, USA: Academic Press.Google Scholar
  33. Georgila, K., Henderson, J., & Lemon, O. (2005a). Learning user simulations for Information State Update dialogue systems. In: Proceedings of Interspeech (pp. 893–896). Lisbon, Portugal.Google Scholar
  34. Georgila, K., Lemon, O., & Henderson, J. (2005b). Automatic annotation of COMMUNICATOR dialogue data for learning dialogue strategies and user simulations. In: Proceedings of SEMDIAL:DIALOR (pp. 61–68). Nancy, France.Google Scholar
  35. Georgila, K., Henderson, J., & Lemon, O. (2006). User simulation for spoken dialogue systems: Learning and evaluation. In: Proceedings of Interspeech (pp. 1065–1068). Pittsburgh, PA, USA.Google Scholar
  36. Georgila, K., Wolters, M., Karaiskos, V., Kronenthal, M., Logie, R., Mayo N., Moore, J. D., & Watson, M. (2008a). A fully annotated corpus for studying the effect of cognitive ageing on users’ interactions with spoken dialogue systems. In: Proceedings of the 6th international conference on language resources and evaluation (LREC) (pp. 938–944). Marrakech, Morocco.Google Scholar
  37. Georgila, K., Wolters, M., & Moore, J. D. (2008b). Simulating the behaviour of older versus younger users. In: Proceedings of the 46th annual meeting of the association for computational linguistics, human language technologies (ACL/HLT) (pp. 49–52). Columbus, OH, USA.Google Scholar
  38. Georgila, K., Lemon, O., Henderson, J., & Moore, J. D. (2009). Automatic annotation of context and speech acts for dialogue corpora. Natural Language Engineering, 15(3), 315–353.CrossRefGoogle Scholar
  39. Giorgino, T., Azzini, I., Rognoni, C., Quaglini, S., Stefanelli, M., Gretter, R., & Falavigna, D. (2005). Automated spoken dialogue system for hypertensive patient home management. Int J Med Inform, 74, 159–167.CrossRefGoogle Scholar
  40. Gödde, F., Möller, S., Engelbrecht, K. P., Kühnel, C., Schleicher, R., Naumann, A., & Wolters, M. (2008). Study of a speech-based smart home system with older users. In: International workshop on intelligent user interfaces for ambient assisted living (pp. 17–22).Google Scholar
  41. Gregor, P., & Dickinson, A. (2007). Cognitive difficulties and access to information systems: An interaction design perspective. Universal Access in the Information Society, 5, 393–400.CrossRefGoogle Scholar
  42. Gregor, P., Newell, A. F., & Zajicek, M. (2002). Designing for dynamic diversity—Interfaces for older people. In: Proceedings of ASSETS 2002, the fifth international ACM conference on assistive technologies (pp. 151–156). Edinburgh, UK.Google Scholar
  43. Hardee, J. (2007). Reexaming synthetic speech: Intelligibility and the effects of age, task, and speech type on recall. MSc thesis, North Carolina, USA: North Carolina State University.Google Scholar
  44. Hedden, T., Lautenschlager, G., & Park, D. C. (2005). Contributions of processing ability and knowledge to verbal memory tasks across the adult life span. Quarterly Journal of Experimental Psychology, 58A, 169–190.Google Scholar
  45. Horton, W. S., & Spieler, D. H. (2007). Age-related differences in communication and audience design. Psychology and Aging, 22(2), 281–290.CrossRefGoogle Scholar
  46. Huguenard, B. W., Lerch, F. J., Junker, B. W., Patz, R. J., & Kass, R. E. (1997). Working memory failure in phone-based interaction. ACM Transactions on Computer–Human Interaction, 4, 67–102.CrossRefGoogle Scholar
  47. Humes, L., & Floyd, S. (2005). Measures of working memory, sequence learning, and speech recognition in the elderly. Journal of Speech, Language, and Hearing Research, 48, 224–235.CrossRefGoogle Scholar
  48. Keates, S., & Clarkson, J. (2004). Inclusive design. London: Springer.Google Scholar
  49. Kemper, S., & Harden, T. (1999). Experimentally disentangling what’s beneficial about elderspeak from what’s not. Psychology of Aging, 14, 656–670.CrossRefGoogle Scholar
  50. Kemper, S., Herman, R. E., & Liu, C. J. (2004). Sentence production by young and older adults in controlled contexts. Journals of Gerontology Series B–Psychological Sciences and Social Sciences, 59(5), 220–224.Google Scholar
  51. Langner, B., & Black, A. (2005). Using speech in noice to improve understandability for elderly listeners. In: Proceedings of IEEE ASRU. San Juan, Puerto Rico.Google Scholar
  52. Larsson, S., & Traum, D. (2000). Information state and dialogue management in the TRINDI dialogue move engine toolkit. Natural Language Engineering, 6(3–4), 323–340.CrossRefGoogle Scholar
  53. Lemon, O., & Pietquin, O. (2007). Machine learning for spoken dialogue systems. In: Proceedings of Interspeech (pp. 2685–2688). Antwerp, Belgium.Google Scholar
  54. Lemon, O., Georgila, K., Henderson, J., & Stuttle, M. (2006). An ISU dialogue system exhibiting reinforcement learning of dialogue policies: Generic slot-filling in the talk in-car system. In: Proceedings of the 11th conference of the European chapter of the association for computational linguistics (EACL) (pp. 119–122). Trento, Italy.Google Scholar
  55. Levin, E., Pieraccini, R., & Eckert, W. (2000). A stochastic model of human-machine interaction for learning dialog strategies. IEEE Transactions on Speech and Audio Processing, 8(1), 11–23.CrossRefGoogle Scholar
  56. Lines, L., & Hone, K. S. (2006). Multiple voices, multiple choices: Older adults evaluation of speech output to support independent living. Gerontechnology, 5(2), 78–91.CrossRefGoogle Scholar
  57. Linville, S. E. (2000). The aging voice. In: Voice quality measurement, singular (pp. 359–376). San Diego, CA, USA.Google Scholar
  58. Litman, D., Silliman, S. (2004). ITSPOKE: An intelligent tutoring spoken dialogue system. In: 4th meeting of the north American chapter of the association for computational linguistics (NAACL/HLT) (pp. 5–8). Boston, MA, USA.Google Scholar
  59. Litman, D., Swerts, M., & Hirschberg, J. (2006). Characterizing and predicting corrections in spoken dialogue systems. Computational Linguistics, 32, 417–438.CrossRefGoogle Scholar
  60. McTear, M., O’Neill, I., Hanna, P., & Liu, X. (2005). Handling errors and determining confirmation strategies—an object-based approach. Speech Communication, 45, 249–269.CrossRefGoogle Scholar
  61. Möller, S., Krebber, J., & Smeele, P. (2006). Evaluating the speech output component of a smart-home system. Speech Communication, 48, 1–27.CrossRefGoogle Scholar
  62. Möller, S., Engelbrecht, K. P., & Oulasvirta, A. (2007). Analysis of communication failures for spoken dialogue systems. In: Proceedings of Interspeech (pp. 134–137). Antwerp, Belgium.Google Scholar
  63. Möller, S., Smeele, P., Boland, H., & Krebber, J. (2007). Evaluating spoken dialogue systems according to de-facto standards: A case study. Computer Speech and Language, 21(1), 26–53.CrossRefGoogle Scholar
  64. Möller, S., Gödde, F., & Wolters, M. (2008). A corpus analysis of spoken smart-home interactions with older users. In: Proceedings of the 6th international conference on language resources and evaluation (LREC) (pp. 735–740). Marrakech, Morocco.Google Scholar
  65. Montemerlo, M., Pineau, J., Roy, N., Thrun, S., & Verma, V. (2002). Experiences with a mobile robotic guide for the elderly. In: Proceedings of the AAAI national conference on artificial intelligence.Google Scholar
  66. Moore, J. D., Foster, M. E., Lemon, O., & White, M. (2004). Generating tailored, comparative descriptions in spoken dialogue. In: Proceedings of the seventeenth international Florida artificial intelligence research society conference.Google Scholar
  67. Müller, C., Wittig, F., & Baus, J. (2003). Exploiting speech for recognizing elderly users to respond to their special needs. In: Proceedings of Eurospeech (pp. 1305–1308). Geneva, Switzerland.Google Scholar
  68. Paek, T., & Chickering, D. (2007). Improving command and control speech recognition on mobile devices: Using predictive user models for language modeling. User Modeling and User-Adapted Interaction, Special Issue on Statistical and Probabilistic Methods for User Modeling, 17(1–2), 93–117.Google Scholar
  69. Paris, C. R., Thomas, M. H., Gilson, R. D., & Kincaid, J. P. (2000). Linguistic cues and memory for synthetic and natural speech. Human Factors, 42, 421–431.CrossRefGoogle Scholar
  70. Pietquin, O., & Dutoit, T. (2006). A probabilistic framework for dialog simulation and optimal strategy learning. IEEE Transactions on Audio, Speech and Language Processing, 14(2), 589–599.CrossRefGoogle Scholar
  71. Pollack, M. (2005). Intelligent technology for an aging population: The use of AI to assist elders with cognitive impairment. AI Magazine, 26, 9–24.Google Scholar
  72. Pollack, M., Brown, L., Colbry, D., McCarthy, C. E., Orosz, C., Peintner, B., Ramakrishman, S., & Tsamardinos, I. (2003). Autominder: An intelligent cognitive orthotic system for people with memory impairment. Robotics and Autonomous Systems, 44, 273–282.CrossRefGoogle Scholar
  73. R Development Core Team (2006). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  74. Rabbitt, P., & Anderson, M. M. (2005). The lacunae of loss? Aging and the differentiation of human abilities. In E. Bialystok & F. I. Craik (Eds.), Lifespan cognition: Mechanisms of change. New York, NY, USA: Oxford University Press.Google Scholar
  75. Raux, A., Bohus, D., Langner, B., Black, A., & Eskenazi, M. (2006). Doing research on a deployed spoken dialogue system: One year of Let’s Go! experience. In: Proceedings of Interspeech. Pittsburgh, PA, USA.Google Scholar
  76. Raven, J., Raven, J., & Court, J. (1998). Manual for Raven’s progressive matrices and vocabulary scales. San Antonio, TX, USA: Harcourt Assessment.Google Scholar
  77. Ringle, M. D., & Halstead-Nussloch, R. (1989). Shaping user input: A strategy for natural language dialogue design. Interacting with Computers, 1, 227–244.CrossRefGoogle Scholar
  78. Roring, R., Hines, F., & Charness, N. (2007). Age differences in identifying words in synthetic speech. Human Factors: The Journal of the Human Factors and Ergonomics Society, 49(1), 25–31.CrossRefGoogle Scholar
  79. Roy, N., Pineau, J., & Thrun, S. (2000). Spoken dialog management for robots. In: Proceedings of the annual meeting of the association for computational linguistics (ACL).Google Scholar
  80. Salthouse, T. A. (2004). What and when of cognitive aging. Current Directions in Psychological Science, 13, 140–144.CrossRefGoogle Scholar
  81. Schatzmann, J., Weilhammer, K., Stuttle, M., & Young, S. (2006). A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies. Knowledge Engineering Review, 21(2), 97–126.CrossRefGoogle Scholar
  82. Searle, J. (1969). Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press.Google Scholar
  83. Sharit, J., Czaja, S. J., Nair, S., & Lee, C. C. (2003). Effects of age, speech rate, and environmental support in using telephone voice menu systems. Human Factors, 45, 234–251.CrossRefGoogle Scholar
  84. Smither, J. A. A. (1993). Short term memory demands in processing synthetic speech by old and young adults. Behaviour and Information Technology, 12(6), 330–335.CrossRefGoogle Scholar
  85. Traum, D. (1994). A computational theory of grounding in natural language conversation. PhD thesis, New York, USA: University of Rochester.Google Scholar
  86. Traum, D. (2000). 20 questions for dialogue act taxonomies. Journal of Semantics, 17(1), 7–30.CrossRefGoogle Scholar
  87. Traum, D. R., Swartout, W., Gratch, J., & Marsella, S. (2008). A virtual human dialogue model for non-team interaction. In L. Dybkjaer & W. Minker (Eds.), Recent Trends in Discourse and Dialogue (pp. 45–67). New York, NY, USA: Springer.CrossRefGoogle Scholar
  88. Unsworth, N., & Engle, R. W. (2005). Individual differences in working memory capacity and learning: Evidence from the serial reaction time task. Mem Cognit, 33, 213–220.Google Scholar
  89. Verhaeghen, P. (2003). Aging and vocabulary scores: A meta-analysis. Psychology of Aging, 18, 332–339.CrossRefGoogle Scholar
  90. Vipperla, R., Wolters, M., Georgila, K., & Renals, S. (2009). Speech input from older users in smart environments: Challenges and perspectives. In: Universal access in HCI, HCI international 2009, LNCS 5615 (pp. 117–126). San Diego, CA, USA: Springer Berlin Heidelberg.Google Scholar
  91. Walker, M. A., Passonneau, R. J., & Boland, J. (2001). Quantitative and qualitative evaluation of DARPA Communicator spoken dialogue systems. In: Proceedings of the annual meeting of the association for computational linguistics (ACL) (pp. 515–522). Toulouse, France.Google Scholar
  92. Walker, M. A., Langkilde-Geary, I., Wright-Hastie, H., Wright, J. H., & Gorin, A. L. (2002). Automatically training a problematic dialogue predictor for the HMIHY spoken dialogue system. Journal of Artificial Intelligence Research, 16, 293–331.Google Scholar
  93. Wechsler, D. (1981). Manual for the Wechsler adult intelligence scale-revised. New York, NY, USA: The Psychological Corporation.Google Scholar
  94. Wolters, M., Campbell, P., DePlacido, C., Liddell, A., & Owens, D. (2007). Making synthetic speech accessible to older people. In: Proceedings of the 6th ISCA workshop on speech synthesis. Bonn, Germany.Google Scholar
  95. Wolters, M., Georgila, K., Moore, J. D., Logie, R. H., MacPherson, S. E., & Watson, M. (2009a). Reducing working memory load in spoken dialogues: Do we have to limit the number of options?. Interacting with Computers, 21(4), 276–287.CrossRefGoogle Scholar
  96. Wolters, M., Georgila, K., Moore, J. D., & MacPherson, S. E. (2009b). Being old doesn’t mean acting old: How older users interact with spoken dialog systems. ACM Transactions on Accessible Computing (TACCESS), 2(1, Article 2), 39.Google Scholar
  97. Wolters, M., Engelbrecht, K. P., Gödde, F., Möller, S., Naumann, A., & Schleicher, R. (2010). Making it easier for older people to talk to smart homes: The effect of early help prompts. Universal Access in the Information Society. doi: 10.1007/s10209-009-0184-x.Google Scholar
  98. Young, S. (2000). Probabilistic methods in spoken dialogue systems. Philosophical Transactions of the Royal Society (Series A), 358(1769), 1389–1402.CrossRefGoogle Scholar
  99. Zajicek, M. (2004). Successful and available: Interface design exemplars for older users. Interacting with Computers, 16, 411–430.CrossRefGoogle Scholar
  100. Zajicek, M. (2006). Aspects of HCI research for older people. Universal Access in the Information Society, 5(3), 279–286.CrossRefGoogle Scholar
  101. Zajicek, M., Wales, R., & Lee, A. (2004). Speech interaction for older adults. Universal Access in the Information Society, 3(2), 122–130.CrossRefGoogle Scholar
  102. Zinn, C., Moore, J. D., & Core, M. G. (2002). A 3-tier planning architecture for managing tutorial dialogue. In: Proceedings of intelligent tutoring systems, sixth international conference (pp. 574–584). Biarritz, France.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kallirroi Georgila
    • 1
    Email author
  • Maria Wolters
    • 2
  • Johanna D. Moore
    • 2
  • Robert H. Logie
    • 3
  1. 1.Institute for Creative TechnologiesUniversity of Southern CaliforniaMarina del ReyUSA
  2. 2.Human Communication Research CentreUniversity of EdinburghEdinburghUK
  3. 3.Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK

Personalised recommendations