Advertisement

Language Resources and Evaluation

, Volume 45, Issue 1, pp 45–62 | Cite as

Cross-language plagiarism detection

  • Martin Potthast
  • Alberto Barrón-Cedeño
  • Benno Stein
  • Paolo Rosso
Article

Abstract

Cross-language plagiarism detection deals with the automatic identification and extraction of plagiarism in a multilingual setting. In this setting, a suspicious document is given, and the task is to retrieve all sections from the document that originate from a large, multilingual document collection. Our contributions in this field are as follows: (1) a comprehensive retrieval process for cross-language plagiarism detection is introduced, highlighting the differences to monolingual plagiarism detection, (2) state-of-the-art solutions for two important subtasks are reviewed, (3) retrieval models for the assessment of cross-language similarity are surveyed, and, (4) the three models CL-CNG, CL-ESA and CL-ASA are compared. Our evaluation is of realistic scale: it relies on 120,000 test documents which are selected from the corpora JRC-Acquis and Wikipedia, so that for each test document highly similar documents are available in all of the six languages English, German, Spanish, French, Dutch, and Polish. The models are employed in a series of ranking tasks, and more than 100 million similarities are computed with each model. The results of our evaluation indicate that CL-CNG, despite its simple approach, is the best choice to rank and compare texts across languages if they are syntactically related. CL-ESA almost matches the performance of CL-CNG, but on arbitrary pairs of languages. CL-ASA works best on “exact” translations but does not generalize well.

Keywords

Cross-language Plagiarism detection Similarity Retrieval model Evaluation 

References

  1. Ballesteros, L. A. (2001). Resolving ambiguity for cross-language information retrieval: A dictionary approach. PhD thesis, University of Massachusetts Amherst, USA, Bruce Croft.Google Scholar
  2. Barrón-Cedeño, A., Rosso, P., Pinto, D., & Juan A. (2008). On cross-lingual plagiarism analysis using a statistical model. In S. Benno, S. Efstathios, & K. Moshe (Eds.), ECAI 2008 workshop on uncovering plagiarism, authorship, and social software misuse (PAN 08) (pp. 9–13). Patras, Greece.Google Scholar
  3. Baum, L. E. (1972). An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process. Inequalities, 3, 1–8.Google Scholar
  4. Berger, A., & Lafferty, J. (1999). Information retrieval as statistical translation. In SIGIR’99: Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval (vol. 4629, pp. 222–229). Berkeley, California, United States: ACM.Google Scholar
  5. Brin, S., Davis, J., & Garcia-Molina, H. (1995). Copy detection mechanisms for digital documents. In SIGMOD ’95 (pp. 398–409). New York, NY, USA: ACM Press.Google Scholar
  6. Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., & Mercer R. L. (1993). The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics, 19(2), 263–311.Google Scholar
  7. Ceska, Z., Toman, M., & Jezek, K. (2008). Multilingual plagiarism detection. In AIMSA’08: Proceedings of the 13th international conference on artificial intelligence (pp. 83–92). Berlin, Heidelberg: Springer.Google Scholar
  8. Clough, P. (2003). Old and new challenges in automatic plagiarism detection. National UK Plagiarism Advisory Service, http://www.ir.shef.ac.uk/cloughie/papers/pas_plagiarism.pdf.
  9. Dempster A. P., Laird N. M., Rubin D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.Google Scholar
  10. Dumais, S. T., Letsche, T. A., Littman, M. L., & Landauer, T. K. (1997). Automatic cross-language retrieval using latent semantic indexing. In D. Hull & D. Oard (Eds.), AAAI-97 spring symposium series: Cross-language text and speech retrieval (pp. 18–24). Stanford University, American Association for Artificial Intelligence.Google Scholar
  11. Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In Proceedings of the 20th international joint conference for artificial intelligence, Hyderabad, India.Google Scholar
  12. Hoad T. C., & Zobel, J. (2003). Methods for identifying versioned and plagiarised documents. American Society for Information Science and Technology, 54(3), 203–215.CrossRefGoogle Scholar
  13. Levow, G.-A., Oard, D. W., & Resnik, P. (2005). Dictionary-based techniques for cross-language information retrieval. Information Processing & Management, 41(3), 523–547.CrossRefGoogle Scholar
  14. Littman, M., Dumais, S. T., & Landauer, T. K. (1998). Automatic cross-language information retrieval using latent semantic indexing. In Cross-language information retrieval, chap. 5 (pp. 51–62). Kluwer.Google Scholar
  15. Maurer, H., Kappe, F., & Zaka, B. (2006). Plagiarism—a survey. Journal of Universal Computer Science, 12(8), 1050–1084.Google Scholar
  16. McCabe, D. (2005). Research report of the Center for Academic Integrity. http://www.academicintegrity.org.
  17. Mcnamee, P., & Mayfield, J. (2004). Character N-gram tokenization for European language text retrieval. Information Retrieval, 7(1–2), 73–97.CrossRefGoogle Scholar
  18. Meyer zu Eissen, S., & Stein, B. (2006). Intrinsic plagiarism detection. In M. Lalmas, A. MacFarlane, S. M. Rüger, A. Tombros, T. Tsikrika, & A. Yavlinsky (Eds.), Proceedings of the European conference on information retrieval (ECIR 2006), volume 3936 of Lecture Notes in Computer Science (pp. 565–569). Springer.Google Scholar
  19. Meyer zu Eissen, S., Stein, B., & Kulig, M. (2007). Plagiarism detection without reference collections. In R. Decker & H. J. Lenz (Eds.), Advances in data analysis (pp. 359–366), Springer.Google Scholar
  20. Och, F. J., & Ney, H. (2003). A systematic comparison of various statistical alignment models. Computational Linguistics, 29(1), 19–51.CrossRefGoogle Scholar
  21. Pinto, D., Juan, A., & Rosso, P. (2007). Using query-relevant documents pairs for cross-lingual information retrieval. In V. Matousek & P. Mautner (Eds.), Lecture Notes in Artificial Intelligence (pp. 630–637). Pilsen, Czech Republic.Google Scholar
  22. Pinto, D., Civera, J., Barrón-Cedeño, A., Juan, A., & Rosso, P. (2009). A statistical approach to cross-lingual natural language tasks. Journal of Algorithms, 64(1), 51–60.CrossRefGoogle Scholar
  23. Potthast, M. (2007). Wikipedia in the pocket-indexing technology for near-duplicate detection and high similarity search. In C. Clarke, N. Fuhr, N. Kando, W. Kraaij, & A. de Vries (Eds.), 30th Annual international ACM SIGIR conference (pp. 909–909). ACM.Google Scholar
  24. Potthast, M., Stein, B., & Anderka, M. (2008). A Wikipedia-based multilingual retrieval model. In C. Macdonald, I. Ounis, V. Plachouras, I. Ruthven, & R. W. White (Eds.), 30th European conference on IR research, ECIR 2008, Glasgow , volume 4956 LNCS of Lecture Notes in Computer Science (pp. 522–530). Berlin: Springer.Google Scholar
  25. Pouliquen, B., Steinberger, R., & Ignat, C. (2003a). Automatic annotation of multilingual text collections with a conceptual thesaurus. In Proceedings of the workshop ’ontologies and information extraction’ at the Summer School ’The Semantic Web and Language Technology—its potential and practicalities’ (EUROLAN’2003) (pp. 9–28), Bucharest, Romania.Google Scholar
  26. Pouliquen, B., Steinberger, R., & Ignat, C. (2003b). Automatic identification of document translations in large multilingual document collections. In Proceedings of the international conference recent advances in natural language processing (RANLP’2003) (pp. 401–408). Borovets, Bulgaria.Google Scholar
  27. Stein, B. (2007). Principles of hash-based text retrieval. In C. Clarke, N. Fuhr, N. Kando, W. Kraaij, & A. de Vries (Eds.), 30th Annual international ACM SIGIR conference (pp. 527–534). ACM.Google Scholar
  28. Stein, B. (2005). Fuzzy-fingerprints for text-based information retrieval. In K. Tochtermann & H. Maurer (Eds.), Proceedings of the 5th international conference on knowledge management (I-KNOW 05), Graz, Journal of Universal Computer Science. (pp. 572–579). Know-Center.Google Scholar
  29. Stein, B., & Anderka, M. (2009). Collection-relative representations: A unifying view to retrieval models. In A. M. Tjoa & R. R. Wagner (Eds.), 20th International conference on database and expert systems applications (DEXA 09) (pp. 383–387). IEEE.Google Scholar
  30. Stein, B., & Meyer zu Eissen, S. (2007). Intrinsic plagiarism analysis with meta learning. In B. Stein, M. Koppel, & E. Stamatatos (Eds.), SIGIR workshop on plagiarism analysis, authorship identification, and near-duplicate detection (PAN 07) (pp. 45–50). CEUR-WS.org.Google Scholar
  31. Stein, B., & Potthast, M. (2007). Construction of compact retrieval models. In S. Dominich & F. Kiss (Eds.), Studies in theory of information retrieval (pp. 85–93). Foundation for Information Society.Google Scholar
  32. Stein, B., Meyer zu Eissen, S., & Potthast, M. (2007). Strategies for retrieving plagiarized documents. In C. Clarke, N. Fuhr, N. Kando, W. Kraaij, & A. de Vries (Eds.), 30th Annual international ACM SIGIR conference (pp. 825–826). ACM.Google Scholar
  33. Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufis, D., & Varga, D. (2006). The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. In Proceedings of the 5th international conference on language resources and evaluation (LREC’2006).Google Scholar
  34. Steinberger, R., Pouliquen, B., & Ignat, C. (2004). Exploiting multilingual nomenclatures and language-independent text features as an interlingua for cross-lingual text analysis applications. In Proceedings of the 4th Slovenian language technology conference. Information Society 2004 (IS’2004).Google Scholar
  35. Vinokourov, A., Shawe-Taylor, J., & Cristianini, N. (2003). Inferring a semantic representation of text via cross-language correlation analysis. In S. Becker, S. Thrun, & K. Obermayer (Eds.), NIPS-02: Advances in neural information processing systems (pp. 1473–1480). MIT Press.Google Scholar
  36. Yang, Y., Carbonell, J. G., Brown, R. D., & Frederking, R. E. (1998). Translingual information retrieval: Learning from bilingual corpora. Artificial Intelligence, 103(1–2), 323–345.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Martin Potthast
    • 1
  • Alberto Barrón-Cedeño
    • 2
  • Benno Stein
    • 1
  • Paolo Rosso
    • 2
  1. 1.Web Technology and Information Systems (Webis)Bauhaus-Universität WeimarWeimarGermany
  2. 2.Natural Language Engineering Lab, ELiRFUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations