Language Resources and Evaluation

, Volume 42, Issue 3, pp 265–291

Comparing and combining semantic verb classifications

  • Oliver Čulo
  • Katrin Erk
  • Sebastian Padó
  • Sabine Schulte im Walde
Article

Abstract

In this article, we address the task of comparing and combining different semantic verb classifications within one language. We present a methodology for the manual analysis of individual resources on the level of semantic features. The resulting representations can be aligned across resources, and allow a contrastive analysis of these resources. In a case study on the Manner of Motion domain across four German verb classifications, we find that some features are used in all resources, while others reflect individual emphases on specific meaning aspects. We also provide evidence that feature representations can ultimately provide the basis for linking verb classes themselves across resources, which allows us to combine their coverage and descriptive detail.

Keywords

Lexical semantics Verb classes Semantic resources Semantic features Resource linking 

References

  1. Atkins, S. (1992). Tools for corpus-aided lexicography: The HECTOR project. Acta Linguistica Hungarica, 41, 5–72.Google Scholar
  2. Ballmer, T. T., & Brennenstuhl, W. (1986). Deutsche Verben. Eine sprachanalytische Untersuchung des Deutschen Verbwortschatzes. Tübingen, Germany: Gunter Narr Verlag.Google Scholar
  3. Baroni, M., & Lenci, A. (2008). Concepts and properties in word spaces. Italian Journal of Linguistics. To appear.Google Scholar
  4. Brants, S., Dipper, S., Hansen, S., Lezius, W., & Smith, G. (2002). The TIGER Treebank. In Proceedings of the Workshop on Treebanks and Linguistic Theories (pp. 24–41). Sozopol.Google Scholar
  5. Budanitsky, A., & Hirst, G. (2006). Evaluating WordNet-based measures of lexical semantic relatedness. Computational Linguistics, 32(1), 13–47.CrossRefGoogle Scholar
  6. Burke, R. B., Hammond, K. J., & Kulyukin, V. A. (1997). Question answering from frequently-asked question files: Experiences with the FAQ finder system. AI Magazine, 18(2): 57(2), 57–66.Google Scholar
  7. Chapman, R. (Ed.) (1977). Roget’s international thesaurus (4th ed.). New York: Harper and Row.Google Scholar
  8. Chow, I., & Webster, J. (2007). Integration of linguistic resources for verb classification: FrameNet Frame, WordNet verb and suggested upper merged ontology. In Proceedings of the Eighth International Conference on Intelligent Text Processing and Computational Linguistics (pp. 1–11). Mexico City.Google Scholar
  9. Cimiano, P. (2006). Ontology learning and population from text. Chapt. Learning attributes and relations. Springer.Google Scholar
  10. Curran, J. (2004). From distributional to semantic similarity. Ph.D. thesis, University of Edinburgh. URL: http://hdl.handle.net/1842/56.
  11. Dagan, I., Lee, L., & Pereira, F. (1999). Similarity-based models of word cooccurrence probabilities. Machine Learning, 34(13), 43–69. Special Issue on Natural Language Learning.CrossRefGoogle Scholar
  12. Dorr, B. J. (1997). Large-scale dictionary construction for foreign language tutoring and interlingual machine translation. Machine Translation, 12(4), 271–322.CrossRefGoogle Scholar
  13. Dorr, B. J., & Jones, D. (1996). Role of word sense disambiguation in lexical acquisition: Predicting semantics from syntactic cues. In Proceedings of the 16th International Conference on Computational Linguistics (pp. 322–327). Copenhagen, Denmark.Google Scholar
  14. Ellsworth, M., Erk, K., Kingsbury, P., & Padó, S. (2004). PropBank, SALSA, and FrameNet: How design determines product. In Proceedings of the LREC Workshop on Building Lexical Resources From Semantically Annotated Corpora. Lisbon, Portugal.Google Scholar
  15. Erk, K., Kowalski, A., Padó, S., & Pinkal, M. (2003). Towards a resource for lexical semantics: A large German corpus with extensive semantic annotation. In Proceedings of the 41st Annual Metting of the Association for Computational Linguistics (pp. 537–544). Sapporo, Japan.Google Scholar
  16. Fellbaum, C. (Ed.) (1998). WordNet – An electronic lexical database, language, speech, and communication. Cambridge, MA: MIT Press.Google Scholar
  17. Fillmore, C. J. (1982). Frame semantics. In Linguistics in the morning calm (pp. 111–137). Seoul: Hanshin Publishing Co.Google Scholar
  18. Fillmore, C. J., Johnson, C. R., & Petruck, M. R. (2003). Background to FrameNet. International Journal of Lexicography, 16(3), 235–250.CrossRefGoogle Scholar
  19. Giuglea, A.-M., & Moschitti, A. (2006). Semantic role labeling via FrameNet, VerbNet and PropBank. In Proceedings of the Joint Annual Meeting of the Association for Computational Linguistics and International Conference on Computational Linguistics (pp. 929–936). Sydney, Australia.Google Scholar
  20. Gruber, J. S. (1965). Studies in lexical relations. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  21. Hamp, B., & Feldweg, H. (1997). GermaNet – A lexical-semantic net for German. In Proceedings of the ACL Workshop on Automatic Information Extraction and Building Lexical Semantic Resources for NLP Applications (pp. 9–15). Madrid, Spain.Google Scholar
  22. Hampton, J. (1993). Prototype models of concept representation. In I. V. Mechelen, J. Hampton, R. S. Michalski, & P. Theuns (Eds.), Categories and concepts: Theoretical views and inductive data analysis (pp. 1–2). London: Academic Press.Google Scholar
  23. Hearst, M. (1992). Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th International Conference on Computational Linguistics (pp. 539–545). Nantes, France.Google Scholar
  24. Hovy, E., Marcus, M., Palmer, M., Pradhan, S., Ramshaw, L., Weischedel, R. (2006). OntoNotes: the 90% solution. In Proceedings of the Joint Human Language Technology and North American Association of Computational Linguistics Conference (pp. 57–60). New York.Google Scholar
  25. Joanis, E., Stevenson, S., & James, D. (2008). A general feature space for automatic verb classification. Natural Language Engineering, 14(3), 337–367.CrossRefGoogle Scholar
  26. Katz, J. J., & Fodor, J. A. (1964). The structure of a semantic theory. In J. J. Katz & J. A. Fodor (Eds.), The structure of language. New York: Prentice-Hall.Google Scholar
  27. Kipper, K., Dang, H. T., & Palmer, M. (2000). Class-based construction of a verb lexicon. In Proceeedings of the Seventeenth National Conference on Artificial Intelligence (pp. 691–696). Austin, TX.Google Scholar
  28. Koehn, P., & Hoang, H. (2007). Factored translation models. In Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (pp. 868–876). Czech Republic: Prague.Google Scholar
  29. Koenig, J. P., & Davis, A. R. (2001). Sublexical modality and the structure of lexical semantics. Linguistics and Philosophy, 24, 71–124.CrossRefGoogle Scholar
  30. Kohomban, U. S., & Lee, W. S. (2005). Learning semantic classes for word sense disambiguation. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (pp. 34–41). Ann Arbor, MI.Google Scholar
  31. Korhonen, A. (2002). Subcategorization acquisition. Ph.D. thesis, University of Cambridge, Computer Laboratory. Technical Report UCAM-CL-TR-530.Google Scholar
  32. Korhonen, A., Krymolowski, Y., & Marx, Z. (2003). Clustering polysemic subcategorization frame distributions semantically. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (pp. 64–71). Sapporo, Japan.Google Scholar
  33. Kunze, C. (2000). Extension and use of GermaNet, a lexical-semantic database. In Proceedings of the 2nd International Conference on Language Resources and Evaluation (pp. 999–1002). Athens, Greece.Google Scholar
  34. Levin, B. (1993). English verb classes and alternations. Chicago, IL: University of Chicago Press.Google Scholar
  35. Lin, D. (1998). Automatic retrieval and clustering of similar words. In Proceedings of the 17th International Conference on Computational Linguistics (pp. 768–774). Montreal, Canada.Google Scholar
  36. Maedche, A., & Staab, S. (2000). Discovering conceptual relations from text. In Proceedings of the 14th European Conference on Artificial Intelligence (pp. 321–325). Berlin, Germany.Google Scholar
  37. McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37, 547–559.Google Scholar
  38. Merlo, P., & Stevenson, S. (2001). Automatic verb classification based on statistical distributions of argument structure. Computational Linguistics, 27(3), 373–408.CrossRefGoogle Scholar
  39. Miller, G. A. (Ed.) (1990). WordNet: An on-line lexical database. Oxford University Press. Special issue of the International Journal of Lexicography, 3(4).Google Scholar
  40. Nastase, V., Sayyad-Shiarabad, J., Sokolova, M., Szpakowic, S. (2006). Learning noun-modifier semantic relations with corpus-based and WordNet-based features. In Proceedings of the 21st National Conference on Artificial Intelligence (pp. 781–787). Boston, MA.Google Scholar
  41. Navigli, R., & Velardi, P. (2003). An analysis of ontology-based query expansion strategies. In Proceedings of the ECML Workshop on Adaptive Text Extraction and Mining (pp. 42–49). Cavtat-Dubrovnik, Croatia.Google Scholar
  42. Ohara, K. H. (2004). Manner of motion in English and Japanese. In Proceedings of the 3rd International Conference on Construction Grammar. Marseille, France.Google Scholar
  43. Padó, U., Crocker, M., & Keller, F. (2006). Modelling semantic role plausibility in human sentence processing. In Proceedings of the 17th Meeting of the European Chapter of the Association for Computational Linguistics (pp. 345–352). Trento, Italy.Google Scholar
  44. Padó, S., & Lapata, M. (2007). Dependency-based construction of semantic space models. Computational Linguistics, 33(2), 161–199.CrossRefGoogle Scholar
  45. Pantel, P., & Pennacchiotti, M. (2006). Espresso: Leveraging generic patterns for automatically harvesting semantic relations. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics (pp. 113–120). Sydney, Australia.Google Scholar
  46. Prescher, D., Riezler, S., & Rooth, M. (2000). Using a probabilistic class-based lexicon for lexical ambiguity resolution. In Proceedings of the 18th International Conference on Computational Linguistics (pp. 649–655). Saarbrücken, Germany.Google Scholar
  47. Schulte im Walde, S. (2003). Experiments on the automatic induction of German semantic verb classes. Ph.D. thesis, Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart. Chapter 2.Google Scholar
  48. Schulte im Walde, S. (2006). Experiments on the automatic induction of German semantic verb classes. Computational Linguistics, 32(2), 159–194.CrossRefGoogle Scholar
  49. Schulte im Walde, S., & Erk, K. (2005). A comparison of German semantic verb classifications. In Proceedings of the Sixth International Workshop on Computational Semantics. Tilburg, Netherlands.Google Scholar
  50. Shen, D., & Lapata, M. (2007). Using semantic roles to improve question answering. In Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (pp. 12–21).Google Scholar
  51. Shi, L., & Mihalcea, R. (2005). Putting pieces together: Combining FrameNet, VerbNet and WordNet for robust semantic parsing. In Proceedings of the 6th International Conference on Intelligent Text Processing and Computational Linguistics (pp. 100–111). Mexico City, Mexico.Google Scholar
  52. Sloman, S. A., Love, B., & Ahn, W. (1998). Feature centrality and conceptual coherence. Cognitive Science, 22, 189–228.Google Scholar
  53. Taylor, J. R. (1989). Linguistic categorization. Oxford University Press.Google Scholar
  54. Vigliocco, G., Vinson, D. P., Lewis, W., & Garrett, M. F. (2004). Representing the meanings of object and action words: The featural and unitary semantic space hypothesis. Cognitive Psychology, 48, 422–488.CrossRefGoogle Scholar
  55. Weeds, J., & Weir, D. (2005). A flexible framework for lexical distributional similarity. Computational Linguistics, 31(4), 439–476.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Oliver Čulo
    • 1
  • Katrin Erk
    • 2
  • Sebastian Padó
    • 3
  • Sabine Schulte im Walde
    • 4
  1. 1.Institute of Applied LinguisticsUniversity of MainzGermersheimGermany
  2. 2.Department of LinguisticsUniversity of Texas at AustinAustinUSA
  3. 3.Department of LinguisticsStanford UniversityStanfordUSA
  4. 4.Institute for Natural Language ProcessingUniversity of StuttgartStuttgartGermany

Personalised recommendations