Language Resources and Evaluation

, Volume 42, Issue 1, pp 21–40 | Cite as

A large-scale classification of English verbs

  • Karin Kipper
  • Anna KorhonenEmail author
  • Neville Ryant
  • Martha Palmer


Lexical classifications have proved useful in supporting various natural language processing (NLP) tasks. The largest verb classification for English is Levin’s (1993) work which defines groupings of verbs based on syntactic and semantic properties. VerbNet (VN) (Kipper et al. 2000; Kipper-Schuler 2005)—an extensive computational verb lexicon for English—provides detailed syntactic-semantic descriptions of Levin classes. While the classes included are extensive enough for some NLP use, they are not comprehensive. Korhonen and Briscoe (2004) have proposed a significant extension of Levin’s classification which incorporates 57 novel classes for verbs not covered (comprehensively) by Levin. Korhonen and Ryant (unpublished) have recently proposed another extension including 53 additional classes. This article describes the integration of these two extensions into VN. The result is a comprehensive Levin-style classification for English verbs providing over 90% token coverage of the Proposition Bank data (Palmer et al. 2005) and thus can be highly useful for practical applications.


Lexical classification Lexical resources Computational linguistics 



This work was supported by National Science Foundation Grants NSF-9800658: VerbNet, NSF-9910603: ISLE, International Standards for Language Engineering, NSF-0415923: Advancing the Performance of Word Sense Disambiguation, the DTO-AQUAINT NBCHC040036 grant under the University of Illinois subcontract to the University of Pennsylvania 2003-07911-01, DARPA Grant N66001-00-1-8915 at the University of Pennsylvania, EPSRC project ‘ACLEX’ at the University of Cambridge Computer Laboratory (UK), and the Royal Society (UK).


  1. Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley FrameNet Project. In: Proceedings of the 17th International Conference on Computational Linguistics (COLING/ACL-98). Montreal, pp. 86–90.Google Scholar
  2. Boguraev, B., Briscoe, T., Carroll, J., Carter, D., & Grover, C. (1987). The derivation of a grammatically-indexed lexicon from the Longman Dictionary of Contemporary English. In: Proceedings of the 25th Annual Meeting of ACL. Stanford, CA, pp. 193–200.Google Scholar
  3. Brew, C., & Schulte im Walde, S. (2002). Spectral Clustering for German Verbs. In: Conference on Empirical Methods in Natural Language Processing. Philadelphia, USA.Google Scholar
  4. Briscoe, T. (2000). Dictionary and System Subcategorisation Code Mappings., University of Cambridge.
  5. Croch, D., & King, T. H. (2005). Unifying Lexical Resources. In: Proceedings of Interdisciplinary Workshop on the Identification and Representation of Verb Features and Verb Classes. Saarbrücken, Germany.Google Scholar
  6. Dang, H. T. (2004). Investigations into the role of lexical semantics in word sense disambiguation. Ph.D. thesis, CIS, University of Pennsylvania.Google Scholar
  7. Dorr, B. J. (1997). Large-scale dictionary construction for foreign language tutoring and interlingual machine translation. Machine Translation, 12(4), 271–325.CrossRefGoogle Scholar
  8. Dorr, B. J. (2001). LCS Verb Database. In: Online software database of lexical conceptual structures and documentation. University of Maryland.Google Scholar
  9. Fellbaum, C. (Ed.). (1998). WordNet: An eletronic lexical database. Language, speech and communications. Cambridge, Massachusetts: MIT Press.Google Scholar
  10. Grishman, R., Macleod, C., & Meyers, A. (1994). COMLEX syntax: Building a computational lexicon. In: Proceedings of the International Conference on Computational Linguistics. Kyoto, Japan.Google Scholar
  11. Hensman, S., & Dunnion, J. (2004). Automatically building conceptual graphs using VerbNet and WordNet. In: Proceedings of the 3rd International Symposium on Information and Communication Technologies (ISICT). Las Vegas, NV, pp. 115–120.Google Scholar
  12. Jackendoff, R. (1990). Semantic structures. Cambridge, Massachusetts: MIT Press.Google Scholar
  13. Kingsbury, P. (2004). Verb clusters from PropBank annotation. Technical Report, University of Pennsylvania, Philadelphia, PA.Google Scholar
  14. Kingsbury, P., & Palmer, M. (2002). From Treebank to PropBank. In: Proceedings of the 3rd International Conference on Language Resources and Evaluation. Las Palmas, Spain.Google Scholar
  15. Kipper, K., Dang, H. T., & Palmer, M. (2000). Class-based construction of a verb lexicon. In: AAAI/IAAI. pp. 691–696.Google Scholar
  16. Kipper, K., Korhonen, A., Ryant, N., & Palmer, M. (2006a). Extending VerbNet with novel verb classes. In: Proceedings of the 5th International Conference on Language Resources and Evaluation. Genova, Italy.Google Scholar
  17. Kipper, K., Korhonen, A., Ryant, N., & Palmer, M. (2006b). A large-scale extension of VerbNet with novel verb classes. In: Proceedings of Euralex. Turin, Italy.Google Scholar
  18. Kipper-Schuler, K. (2005). VerbNet: A broad-coverage, comprehensive verb lexicon. Ph.D. thesis, Computer and Information Science Dept., University of Pennsylvania, PA.Google Scholar
  19. Korhonen, A. (2002). Semantically motivated subcategorization acquisition. In: ACL Workshop on Unsupervised Lexical Acquisition. Philadelphia.Google Scholar
  20. Korhonen, A. & Briscoe, T. (2004). Extended lexical-semantic classification of English verbs. In: Proceedings of the HLT/NAACL Workshop on Computational Lexical Semantics. Boston, MA.Google Scholar
  21. Korhonen, A., Krymolowski, Y., & Marx, Z. (2003). Clustering polysemic subcategorization frame distributions semantically. In: Proceedings of the 41st Annual Meeting of ACL. Sapporo, Japan, pp. 64–71.Google Scholar
  22. Levin, B. (1993). English verb classes and alternation, A preliminary investigation. The University of Chicago Press.Google Scholar
  23. Loper, E., Yi, S-t., & Palmer, M. (2007). Combining lexical resources: Mapping between PropBank and VerbNet. In: Proceedings of the 7th International Workshop on Computational Semantics. Tilburg, the Netherlands.Google Scholar
  24. McCarthy, D. (2001). Lexical acquisition at the syntax-semantics interface. Ph.D. thesis, University of Sussex.Google Scholar
  25. Miller, G. A. (1990). WordNet: An on-line lexical database. International Journal of Lexicography, 3(4), 235–312.CrossRefGoogle Scholar
  26. Moens, M., & Steedman, M. (1988). Temporal ontology and temporal reference. Computational Linguistics, 14, 15–38.Google Scholar
  27. Palmer, M., Gildea, D., & Kingsbury, P. (2005). The Proposition Bank: A corpus annotated with semantic roles. Computational Linguistics 31(1), 71–106.Google Scholar
  28. Pinker, S. (1989). Learnability and cognition: The acquisition of argument structure. Cambridge: MIT Press.Google Scholar
  29. Pradhan, S., Loper, E., Dligach, D., & Palmer, M. (2007). SemEval-2007 Task-17: English lexical sample, SRL and all words. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007). ACL-2007, Prague, the Czech Republic.Google Scholar
  30. Prescher, D., Riezler, S., & Rooth, M. (2000). Using a Probabilistic class-based lexicon for lexical ambiguity resolution. In: Proceedings of the 18th International Conference on Computational Linguistics. Saarbrücken, Germany, pp. 649–655.Google Scholar
  31. Rudanko, J. (1996). Prepositions and complement clauses. Albany: State University of New York Press.Google Scholar
  32. Rudanko, J. (2000). Corpora and complementation. University Press of America.Google Scholar
  33. Sager, N. (1981). Natural language information processing: A computer grammar of English and its applications. MA: Addison-Wesley Publising Company.Google Scholar
  34. Shi, L., & Mihalcea, R. (2005). Putting pieces together: Combining FrameNet, VerbNet and WordNet for robust semantic parsing. In: Proceedings of the Sixth International Conference on Intelligent Text Processing and Computational Linguistics. Mexico City.Google Scholar
  35. Swier, R., & Stevenson, S. (2004). Unsupervised semantic role labelling. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. Barcelona, Spain, pp. 95–102.Google Scholar
  36. Swift, M. (2005). Towards automatic verb acquisition from VerbNet for spoken dialog processing. In: Proceedings of Interdisciplinary Workshop on the Identification and Representation of Verb Features and Verb Classes. Saarbrücken, Germany.Google Scholar
  37. Yi, S-t., Loper, E., & Palmer, M. (2007). Can semantic roles generalize across genres? In: Proceedings of HLT/NAACL-2007. Rochester, NY, USA.Google Scholar
  38. Trumbo, D. (2006). Increasing the usability of research lexica. Computer Science Master’s Thesis, University of Colorado.Google Scholar
  39. XTAG Research Group (2001). A lexicalized tree adjoining grammar for English. Technical Report IRCS-01-03, IRCS, University of Pennsylvania.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Karin Kipper
    • 1
  • Anna Korhonen
    • 2
    Email author
  • Neville Ryant
    • 1
  • Martha Palmer
    • 3
  1. 1.Computer and Information Science DepartmentUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Computer LaboratoryUniversity of CambridgeCambridgeUK
  3. 3.Department of LinguisticsUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations