Chromosome Research

, Volume 27, Issue 4, pp 333–344 | Cite as

Comparative meiosis and cytogenomic analysis in euploid and aneuploid hybrids of Urochloa P. Beauv

  • Mara Jane da Rocha
  • Raquel Bezerra Chiavegatto
  • Ana Gabriela Damasceno
  • Laiane Corsini Rocha
  • Fausto Souza Sobrinho
  • Vânia Helena TechioEmail author
Original Article


The genus Urochloa includes most of the important grasses and hybrids currently used as pastures in the tropical regions. Cytogenetic analyzes have identified some aneuploid hybrids that provide new perspectives for genetic breeding. The objective was to analyze the meiotic behavior in euploid (2n = 4x = 36) and aneuploid (2n = 4x = 36 + 2) hybrids of U. ruziziensis x U. decumbens and U. ruziziensis x U. brizantha. Later, the chromosomes and respective genomes involved in pairing configurations and abnormalities were identified through GISH, with an emphasis on tracking the behavior of the additional chromosomes in the aneuploid hybrid U. ruziziensis x U. decumbens (B1B2B2B2 genomes). The aneuploid U. ruziziensis x U. decumbens shows a higher frequency of univalents, reduction of bivalents, and higher index of irregularities compared with the euploid hybrid. For the aneuploid U. ruziziensis x U. brizantha, there was a reduction in the frequency of univalents, an increase in bivalent and trivalent rates and a lower frequency of abnormalities when compared with the euploid hybrid. The rates of meiotic abnormalities and pairing configurations are parental genotype-dependent and influenced by trisomy. The chromosomes of the B1 and B2 genomes of the aneuploid hybrid (U. ruziziensis x U. decumbens) are involved in the formation of univalents, bivalents, and multivalents in inter-, intra- and inter–intragenomic pairings. In general, the segregation times of chromosomes of the genomes are different, since the chromosomes of the B1 genome segregate more slowly.


Microsporogenesis Genomic analysis Interspecific hybrids Trisomy Brachiaria 



Genomic in situ hybridization


Fluorescent in situ hybridization


Genomic DNA


Cetyltrimethylammonium bromide


2′ saline sodium citrate




Ribosomal DNA


Funding information

The authors thank the support of the Foundation for Research Support of the State of Minas Gerais (FAPEMIG), the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq) for financial support for the development of this study.

Supplementary material

10577_2019_9616_Fig5_ESM.png (503 kb)
Fig. S1

Mitotic metaphases of the EGL RxD#01 hybrid between U. ruziziensis x U. decumbens with 36 chromosomes (a) and the hybrid 10.6-168 between U. ruziziensis x U. brizantha with 36 + 2 chromosomes (b). The bar represents 10 μm. (PNG 503 kb)

10577_2019_9616_MOESM1_ESM.tif (8.8 mb)
High Resolution Image (TIF 9041 kb)


  1. Adamowski EV, Pagliarini MS,  Valle CB do (2008) Meiotic behaviour in three interspecific three-way hybrids between Brachiaria ruziziensis and Brachiaria brizantha (Poaceae: Paniceae). J Genet 87:33–38. CrossRefGoogle Scholar
  2. Alexander MP (1980) A versatile stain for pollen from fungi, yeast and bacteria. Stain Technol 55:13–18. CrossRefPubMedGoogle Scholar
  3. Alvim MJ, Botrel MA, Xavier DF (2002) As principais espécies de braquiárias utilizadas no país. Comunicado Técnico 22 Accessed 10 June 2019
  4. Araújo SAC, Deminicis BB, Campos PRSS (2008) Melhoramento genético de plantas forrageiras tropicais no Brasil. Arch Zootech 57:61–76Google Scholar
  5. Carrillo ARQ, Quiroz JFE, Nieto CRM, Jiménez LM (2010) Apomixis importance for tropical forage grass selection and breeding. Rev Rev Mex Cienc Pecu 1:25–42Google Scholar
  6. Chelysheva LA, Grandont L, Grelon M (2013) Immunolocalization of meiotic proteins in Brassicaceae: method 1. In: Pawlowski WP, Grelon M, Armstrong S (eds) Plant meiosis: methods and protocols. Springer Science+Business Media, New York, pp 93–101CrossRefGoogle Scholar
  7. Cho SW, Moritama Y, Ishii T, Kishii M, Tanaka H, Eltayeb AE, Tsujimoto H (2011) Homology of two alien chromosomes during meiosis in wheat. Chromosome Sci 14:45–52. CrossRefGoogle Scholar
  8. Choi K (2017) Advances towards controlling meiotic recombination for plant breeding. Mol Cell 40:814–822. CrossRefGoogle Scholar
  9. Euclides VPB, Valle CB do, Macedo MCM, Almeida RGD, Montagner DB, Barbosa RA (2010) Brazilian scientific progress in pasture research during the first decade of XXI century. Rev Bras Zootec 39:151–168. CrossRefGoogle Scholar
  10. Felismino MF, Pagliarini MS, Valle CB do (2010) Meiotic behavior of interspecific hybrids between artificially tetraploidized sexual Brachiaria ruziziensis and tetraploid apomictic B. brizantha (Poaceae). Sci Agric 67:191–197. CrossRefGoogle Scholar
  11. Fuzinatto VA, Pagliarini MS, Valle CB do (2007) Microsporogenesis in sexual Brachiaria hybrids (Poaceae). Genet Mol Res 6:1107–1117Google Scholar
  12. Fuzinatto VA, Pagliarini MS, Valle CB do (2012) Meiotic behavior in apomictic Brachiaria ruziziensis × Brachiaria brizantha (Poaceae) progenies. Sci Agric 69:380–385. CrossRefGoogle Scholar
  13. Humphreys MW, Canter PJ, Thomas HM (2003) Advances in introgression technologies for precision breeding within the Lolium—Festuca complex. Ann Appl Biol 143:1–10. CrossRefGoogle Scholar
  14. Ishigaki G, Gondo T, Suenaga K, Akashi R (2009) Induction of tetraploid ruzigrass (Brachiaria ruziziensis) plants by colchicine treatment of in vitro multiple-shoot clumps and seedlings. Jpn Soc Grassl Sci 5:164–170. CrossRefGoogle Scholar
  15. Mendes–Bonato AB, Pagliarini MS, Valle CB do (2004) Abnormal pollen mitoses (PM I and PM II) in an interspecific hybrid of Brachiaria ruziziensis and Brachiaria decumbens (Gramineae). J Genet 83:279–283CrossRefGoogle Scholar
  16. Mendes–Bonato AB, Pagliarini MS, do Valle CB do (2006a) Abnormal spindle orientation during microsporogenesis in an interspecific Brachiaria (Gramineae) hybrid. Genet Mol 29:122–125. CrossRefGoogle Scholar
  17. Mendes–Bonato AB, Risso-Pascotto C, Pagliarini MS,  Valle CB do (2006b) Cytogenetic evidence for genome elimination during microsporogenesis in interspecific hybrid between Brachiaria ruziziensis and B. brizantha (Poaceae). Genet Mol Biol 29:711–714. CrossRefGoogle Scholar
  18. Mendes–Bonato AB, Pagliarini MS,  Valle CB do (2007) Meiotic arrest compromises pollen fertility in an interspecific hybrid between Brachiaria ruziziensis x Brachiaria decumbens (Poaceae: Paniceae). Braz Arch Biol Technol 50:831–837. CrossRefGoogle Scholar
  19. Molnár-Láng M, Ceoloni C, Doležel J (2015) Alien introgression in wheat—cytogenetics, molecular biology, and genomics. Springer, SwitzerlandGoogle Scholar
  20. Moraes IC, Rume GC, Souza Sobrinho F, Techio VH (2019) Characterization of aneuploidy in interspecific hybrid between Urochloa ruziziensis (R. germ. & Evrard) Crins and Urochloa decumbens (Stapf) R. D. Webster. Mol Biol Rep 46:1. CrossRefGoogle Scholar
  21. Nani TF, Pereira DL, Souza Sobrinho F, Techio VH (2016) Physical map of repetitive DNA sites in Brachiaria spp.: intravarietal and interspecific hybrids. Crop Sci 56:1769–1783. CrossRefGoogle Scholar
  22. Papp I, Iglesias VA, Moscone EA, Michalowski S, Spiker S, Park YD, Matzke MA, Matzke AJM (1996) Structural instability of a transgene locus in tobacco is associated with aneuploidy. Plant J 10:469–478. CrossRefPubMedGoogle Scholar
  23. Paula CMP, Sobrinho FS, Techio VH (2017) Genomic constitution and relationship in Urochloa (Poaceae) species and hybrids. Crop Sci 57:2605–2616. CrossRefGoogle Scholar
  24. Rocha LC, Ferreira MTM, Cunha IMF, Mittelmann A, Techio VH (2018) 45S rDNA sites in meiosis of Lolium multiflorum Lam.: variability, non-homologous associations and lack of fragility. Protoplasma 256:227–235. CrossRefGoogle Scholar
  25. Santos YS (2018). Avaliação de marcas epigenéticas com a análise da expressão gênica de rDNA45S em Urochloa ruziziensis, Urochloa brizantha e seu híbrido. Dissertation, Universidade de Federal de LavrasGoogle Scholar
  26. Singh RJ (2017) Plant cytogenetics, 3rd edn. Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  27. Sybenga J (1992) Cytogenetics in plant breeding. Springer-Verlag, New YorkCrossRefGoogle Scholar
  28. Techio VH, Davide LC (2007) Análise genômica em cromossomos de plantas com base no pareamento meiótico. Biotemas 20:7–18.Google Scholar
  29. Timbó AL de O, Souza PN da C, Pereira RC, Nunes JD, Pinto JEBP, Souza Sobrinho F, Davide LC (2014) Obtaining tetraploid plants of ruzigrass (Brachiaria ruziziensis). R Bras Zootec 43:127–134. CrossRefGoogle Scholar
  30. Valle CB do, Pagliarini MS (2009) Biology, cytogenetics, and breeding of Brachiaria In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. CRC Press, Boca Raton, pp 103–151Google Scholar
  31. Valle CB do, Savidan Y (1996) Genetics, cytogenetics and reproductive biology of Brachiaria. In: Miles JW, Maass BL, Valle CB (eds) Brachiaria: biology, agronomy, and improvement. CIAT, Cali, pp 147–163Google Scholar
  32. Worthington M, Heffelfinger C, Bernal D, Quintero C, Zapata YP, Perez JG, De Vega J, Miles J, Dellaporta S, Tohme J (2016) A parthenogenesis gene candidate and evidence for segmental allopolyploidy in apomictic Brachiaria decumbens. Genetics 203:1117–1132. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biology/DBI – Plant Cytogenetics LaboratoryFederal University of Lavras (UFLA)LavrasBrazil
  2. 2.Embrapa Gado de LeiteJuiz de ForaBrazil

Personalised recommendations