Advertisement

UVA irradiation strengthened an interaction between UBF1/2 proteins and H4K20 di-/tri-methylation

  • Lenka Stixová
  • Denisa Komůrková
  • Alena Svobodová Kovaříková
  • Eva BártováEmail author
Original Article
  • 44 Downloads

Abstract

Repair of ribosomal DNA (rDNA) is a very important nuclear process due to the most active transcription of ribosomal genes. Proper repair of rDNA is required for physiological biogenesis of ribosomes. Here, we analyzed the epigenetics of the DNA damage response in a nucleolar compartment, thus in the ribosomal genes studied in nonirradiated and UVA-irradiated mouse embryonic fibroblasts (MEFs). We found that the promoter of ribosomal genes is not abundant on H4K20me2, but it is densely occupied by H4K20me3. Ribosomal genes, regulated via UBF1/2 proteins, were characterized by an interaction between UBF1/2 and H4K20me2/me3. This interaction was strengthened by UVA irradiation that additionally causes a focal accumulation of H4K20me3 in the nucleolus. No interaction has been found between UBF1/2 and H3K9me3. Interestingly, UVA irradiation decreases the levels of H3K9me3 and H4K20me3 at 28S rDNA. Altogether, the UVA light affects the epigenetic status of ribosomal genes at 28S rDNA and strengthens an interaction between UBF1/2 proteins and H4K20me2/me3.

Keywords

DNA repair UVA irradiation Nucleolus UBF DNA damage response 

Abbreviations

ATM

Ataxia telangiectasia mutated

ATR

ATM and Rad3 related

ChIP

Chromatin immunoprecipitation

CPDs

Cyclobutane pyrimidine dimers

DDR

DNA damage response

DFC

Dense fibrillar compartment

DMEM

Dulbecco’s modified Eagle’s medium

DSBs

Double-strand breaks

FC

Fibrillar centers

FLIM

Fluorescence-lifetime imaging microscopy

FRET

Förster resonance energy transfer

GC

Granular component

GFP

Green fluorescence protein

GG-NER

Global genome NER

H3K9me3

Tri-methylated lysine 9 of histone H3

H4K20me3/me2

Tri-methylated/di-methylated lysine 20 of histone H4

HR

Homologous recombination

MEFs

Mouse embryonic fibroblasts

NBS1

Nijmegen breakage syndrome

NER

Nucleotide excision repair

NHEJ

Nonhomologous end joining

NORs

Nucleolar organizer regions

PBS

Phosphate-buffered saline

PCR

Polymerase chain reaction

PTMs

Posttranslational modifications

rDNA

Ribosomal DNA

RNA Pol I/II

RNA polymerase I/II

rRNA

Ribosomal RNA

SDS

Sodium dodecyl sulfate

TC-NER

Transcription-coupled NER

TCOF-1

Treacle ribosome biogenesis factor 1

UBF 1/2

Upstream binding factor 1/2

UVA, UVC

Ultraviolet A, ultraviolet C

Notes

Acknowledgements

We thank Soňa Legartová for the description of FLIM-FRET methodology.

Authors’ contribution

LS was responsible for western blotting, immunofluorescence, immunoprecipitation, confocal microscopy, FLIM-FRET, and UVA irradiation. LS wrote a draft of the manuscript. DK performed the ChIP-PCR analyses and data quantifications. AK provided help with the western blotting and with the interpretation of FLIM-FRET results. EB coordinated experimental efforts, suggested experiments, finalized all images, and wrote the final version of this paper. All authors read and approved the final version of this manuscript.

Funding

This work was supported by the Czech Science Foundation (grant number: 18-07384S). Work was also supported by Strategie AV21, programme Qualitas, the Center for Epigenetics (68081707).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Andersen JS, Lam YW, Leung AKL, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83.  https://doi.org/10.1038/nature03207 CrossRefPubMedGoogle Scholar
  2. Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, Xu Y, Price BD (2014) DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci U S A 111:9169–9174.  https://doi.org/10.1073/pnas.1403565111 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bacskai BJ, Skoch J, Hickey GA, Allen R, Hyman BT (2003) Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques. J Biomed Opt 8:368–375.  https://doi.org/10.1117/1.1584442 CrossRefPubMedGoogle Scholar
  4. Bian Q, Anderson EC, Brejc K, Meyer BJ (2017) Dynamic control of chromosome topology and gene expression by a chromatin modification. Cold Spring Harb Symp Quant Biol LXXXII:034439.  https://doi.org/10.1101/sqb.2017.82.034439 CrossRefGoogle Scholar
  5. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127:1361–1373.  https://doi.org/10.1016/j.cell.2006.10.043 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227.  https://doi.org/10.1016/j.molcel.2010.09.024 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bromberg KD, Mitchell TRH, Upadhyay AK, Jakob CG, Jhala MA, Comess KM, Lasko LM, Li C, Tuzon CT, Dai Y, Li F, Eram MS, Nuber A, Soni NB, Manaves V, Algire MA, Sweis RF, Torrent M, Schotta G, Sun C, Michaelides MR, Shoemaker AR, Arrowsmith CH, Brown PJ, Santhakumar V, Martin A, Rice JC, Chiang GG, Vedadi M, Barsyte-Lovejoy D, Pappano WN (2017) The SUV4-20 inhibitor A-196 verifies a role for epigenetics in genomic integrity. Nat Chem Biol 13:317–324.  https://doi.org/10.1038/nchembio.2282 CrossRefPubMedGoogle Scholar
  8. Chitale S, Richly H (2018) DIC ER- and MMS ET-catalyzed H4K20me2 recruits the nucleotide excision repair factor XPA to DNA damage sites. J Cell Biol 217:527–540.  https://doi.org/10.1083/jcb.201704028 CrossRefPubMedPubMedCentralGoogle Scholar
  9. de Laat W, Jaspers N, Hoeijmakers J (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13:768–785.  https://doi.org/10.1101/gad.13.7.768 CrossRefPubMedGoogle Scholar
  10. Elangovan M, Day RN, Periasamy A (2002) Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. J Microsc 205:3–14CrossRefGoogle Scholar
  11. Farley KI, Surovtseva Y, Merkel J, Baserga SJ (2015) Determinants of mammalian nucleolar architecture. Chromosoma 124:323–331.  https://doi.org/10.1007/s00412-015-0507-z CrossRefPubMedPubMedCentralGoogle Scholar
  12. Franek M, Kovaříková A, Bártová E, Kozubek S (2016) Nucleolar reorganization upon site-specific double-strand break induction. J Histochem Cytochem 64:669–686.  https://doi.org/10.1369/0022155416668505 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo PA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–177.  https://doi.org/10.1016/J.MOLCEL.2008.05.017 CrossRefPubMedGoogle Scholar
  14. Grummt I (2007) Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Hum Mol Genet 16:R21–R27.  https://doi.org/10.1093/hmg/ddm020 CrossRefPubMedGoogle Scholar
  15. Harničarová Horáková A, Bártová E, Galiová G, Uhlířová R, Matula P, Kozubek S (2010) SUV39h-independent association of HP1β with fibrillarin-positive nucleolar regions. Chromosoma 119:227–241.  https://doi.org/10.1007/s00412-009-0252-2 CrossRefGoogle Scholar
  16. Haugland RP, Yguerabide J, Stryer L (1969) Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proc Natl Acad Sci U S A 63:23–30CrossRefGoogle Scholar
  17. Jørgensen S, Schotta G, Sørensen CS (2013) Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res 41:2797–2806.  https://doi.org/10.1093/nar/gkt012 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kakarougkas A, Ismail A, Klement K, Goodarzi AA, Conrad S, Freire R, Shibata A, Lobrich M, Jeggo PA (2013) Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Res 41:9719–9731.  https://doi.org/10.1093/nar/gkt729 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Krishnan RV, Saitoh H, Terada H, Centonze VE, Herman B (2003) Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev Sci Instrum 74:2714–2721.  https://doi.org/10.1063/1.1569410 CrossRefGoogle Scholar
  20. Kruhlak M, Crouch EE, Orlov M, Montaño C, Gorski SA, Nussenzweig A, Misteli T, Phair RD, Casellas R (2007) The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 447:730–734.  https://doi.org/10.1038/nature05842 CrossRefPubMedGoogle Scholar
  21. Lakowicz JR (1999) Principles of fuorescence spectroscopy, 3rd edn. Springer US, New YorkCrossRefGoogle Scholar
  22. Lans H, Marteijn JA, Vermeulen W (2012) ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 5:4.  https://doi.org/10.1186/1756-8935-5-4 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Larsen DH, Hari F, Clapperton JA, Gwerder M, Gutsche K, Altmeyer M, Jungmichel S, Toledo LI, Fink D, Rask MB, Grøfte M, Lukas C, Nielsen ML, Smerdon SJ, Lukas J, Stucki M (2014) The NBS1-treacle complex controls ribosomal RNA transcription in response to DNA damage. Nat Cell Biol 16:792–803.  https://doi.org/10.1038/ncb3007 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lindström MS, Jurada D, Bursac S, Orsolic I, Bartek J, Volarevic S (2018) Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene 37:2351–2366.  https://doi.org/10.1038/s41388-017-0121-z CrossRefPubMedPubMedCentralGoogle Scholar
  25. McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157.  https://doi.org/10.1146/annurev.cellbio.24.110707.175259 CrossRefPubMedGoogle Scholar
  26. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560.  https://doi.org/10.1038/nature06008 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Moore HM, Bai B, Boisvert F-M, Latonen L, Rantanen V, Simpson JC, Pepperkok R, Lamond AI, Laiho M (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10:M111.009241.  https://doi.org/10.1074/mcp.M111.009241 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Németh A, Grummt I (2018) Dynamic regulation of nucleolar architecture. Curr Opin Cell Biol 52:105–111.  https://doi.org/10.1016/J.CEB.2018.02.013 CrossRefPubMedGoogle Scholar
  29. Ogawa LM, Baserga SJ (2017) Crosstalk between the nucleolus and the DNA damage response. Mol BioSyst 13:443–455.  https://doi.org/10.1039/c6mb00740f CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pederson T (2010) Cytologically “compact” nuclear domains. Nucleus 1:444–445.  https://doi.org/10.4161/nucl.1.5.13056 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pesavento JJ, Yang H, Kelleher NL, Mizzen CA (2008) Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol Cell Biol 28:468–486.  https://doi.org/10.1128/MCB.01517-07 CrossRefPubMedGoogle Scholar
  32. Raska I, Rychter Z, Smetana K (1983) Fibrillar centres and condensed nucleolar chromatin in resting and stimulated human lymphocytes. Z Mikrosk Anat Forsch 97:15–32PubMedGoogle Scholar
  33. Reardon JT, Sancar A (2003) Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers by the human excision nuclease. Genes Dev 17:2539–2551.  https://doi.org/10.1101/gad.1131003 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Santoro R, Grummt I (2005) Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation. Mol Cell Biol 25:2539–2546.  https://doi.org/10.1128/MCB.25.7.2539-2546.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Schwarzacher HG, Wachtler F (1993) The nucleolus. Anat Embryol (Berl) 188:515–536CrossRefGoogle Scholar
  36. Sorokin DV, Stixová L, Sehnalová P, Legartová S, Suchánková J, Šimara P, Kozubek S, Matula P, Skalníková M, Raška I, Bártová E (2015) Localized movement and morphology of UBF1-positive nucleolar regions are changed by γ-irradiation in G2 phase of the cell cycle. Nucleus 6:301–313.  https://doi.org/10.1080/19491034.2015.1075111 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Stixová L, Sehnalová P, Legartová S, Suchánková J, Hrušková T, Kozubek S, Sorokin DV, Matula P, Raška I, Kovařík A, Fulneček J, Bártová E (2014) HP1β-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Epigenetics Chromatin 7:39.  https://doi.org/10.1186/1756-8935-7-39 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Strašák L, Bártová E, Harničarová A et al (2009) H3K9 acetylation and radial chromatin positioning. J Cell Physiol 220:91–101.  https://doi.org/10.1002/jcp.21734 CrossRefPubMedGoogle Scholar
  39. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A 58:719–726CrossRefGoogle Scholar
  40. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846.  https://doi.org/10.1146/annurev.bi.47.070178.00413 CrossRefPubMedGoogle Scholar
  41. Svobodová Kovaříková A, Legartová S, Krejčí J, Bártová E (2018) H3K9me3 and H4K20me3 represent the epigenetic landscape for 53BP1 binding to DNA lesions. Aging (Albany NY) 10:2585–2605.  https://doi.org/10.18632/aging.101572 CrossRefGoogle Scholar
  42. Thiry M, Lafontaine DLJ (2005) Birth of a nucleolus: the evolution of nucleolar compartments. Trends Cell Biol 15:194–199.  https://doi.org/10.1016/j.tcb.2005.02.007 CrossRefPubMedGoogle Scholar
  43. Tong Q, Cui G, Botuyan MV, Rothbart SB, Hayashi R, Musselman CA, Singh N, Appella E, Strahl BD, Mer G, Kutateladze TG (2015) Structural plasticity of methyllysine recognition by the tandem tudor domain of 53BP1. Structure 23:312–321.  https://doi.org/10.1016/j.str.2014.11.013 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Večeřa J, Bártová E, Krejčí J, Legartová S, Komůrková D, Rudá-Kučerová J, Štark T, Dražanová E, Kašpárek T, Šulcová A, Dekker FJ, Szymanski W, Seiser C, Weitzer G, Mechoulam R, Micale V, Kozubek S (2018) HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals. J Cell Physiol 233:530–548.  https://doi.org/10.1002/jcp.25914 CrossRefPubMedGoogle Scholar
  45. Wakeman TP, Wang Q, Feng J, Wang X-F (2012) Bat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases. EMBO J 31:2169–2181.  https://doi.org/10.1038/emboj.2012.50 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Warmerdam DO, van den Berg J, Medema RH (2016) Breaks in the 45S rDNA lead to recombination-mediated loss of repeats. Cell Rep 14:2519–2527.  https://doi.org/10.1016/J.CELREP.2016.02.048 CrossRefPubMedGoogle Scholar
  47. Wood K, Tellier M, Murphy S (2018) DOT1L and H3K79 methylation in transcription and genomic stability. Biomolecules 8.  https://doi.org/10.3390/biom8010011
  48. Zentner GE, Balow SA, Scacheri PC (2014) Genomic characterization of the mouse ribosomal DNA locus. G3(Bethesda) : Genes|Genomes|Genetics 4:243–254.  https://doi.org/10.1534/g3.113.009290 CrossRefGoogle Scholar
  49. Zentner GE, Saiakhova A, Manaenkov P, Adams MD, Scacheri PC (2011) Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res 39:4949–4960.  https://doi.org/10.1093/nar/gkq1326 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zimmermann M, de Lange T (2014) 53BP1: pro choice in DNA repair. Trends Cell Biol 24:108–117.  https://doi.org/10.1016/j.tcb.2013.09.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic

Personalised recommendations