Chromosome Research

, Volume 26, Issue 4, pp 233–241 | Cite as

Genes involved in miRNA biogenesis affect meiosis and fertility

  • Mónica PradilloEmail author
  • Juan L. Santos


MicroRNAs (miRNAs) are a class of small (containing about 22 nucleotides) single-stranded non-coding RNAs that regulate gene expression at the post-transcriptional level in plants and animals, being absent from unicellular organisms. They act on diverse key physiological and cellular processes, such as development and tissue differentiation, cell identity, cell cycle progression, and programmed cell death. They are also likely to be involved in a broad spectrum of human diseases. Particularly, this review examines and summarizes work characterizing the function of miRNAs in gametogenesis and fertility. Although numerous studies have elucidated the involvement of reproductive-specific small interfering RNAs (siRNAs) in regulating germ cell development and meiosis, less is known about the role of miRNAs in these processes. We focus on the study of hypomorphic and null alleles of genes encoding components of miRNA biogenesis in both plants (Arabidopsis thaliana) and mammals (Mus musculus). We compare the consequences of the presence of these mutations on male meiosis in both species.


Arabidopsis Fertility Gametogenesis Meiosis Mice miRNAs 





Ataxia-Telangiectasia Mutated




DNA double-strand break




Homologous recombination










Megaspore mother cell


Meiotic sex chromosome inactivation


Phased small interfering RNA


PIWI-interacting RNA


Pollen mother cell


RNA-induced silencing complex


Synaptonemal complex






Small interfering RNA


Synaptonemal complex protein 1


Human immunodeficiency virus trans-activating protein response RNA-binding protein




Author contribution statement

JLS conceived the review. MP and JLS wrote the manuscript, contributed to revisions, and approved the final version. MP designed the figures.

Funding information

The authors acknowledge the support of the Ministry of Economy and Competitiveness of Spain (by grants AGL2012-38852 and AGL2015-67349-P) and of the European Union (FP7: Meiosys-KBBE-2009-222883).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207PubMedGoogle Scholar
  2. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933PubMedPubMedCentralGoogle Scholar
  3. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366PubMedGoogle Scholar
  4. Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504PubMedGoogle Scholar
  5. Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503PubMedGoogle Scholar
  6. Borges F, Pereira PA, Slotkin RK (2011) MicroRNA activity in the Arabidopsis male germline. J Exp Bot 62:1611–1620PubMedPubMedCentralGoogle Scholar
  7. Bukhari SI, Vasquez-Rifo A, Gagné D, Paquet ER, Zetka M, Robert C, Masson JY, Simard MJ (2012) The microRNA pathway controls germ cell proliferation and differentiation in C. elegans. Cell Res 22:1034–1045PubMedPubMedCentralGoogle Scholar
  8. Chávez Montes RA, de Fátima Rosas-Cárdenas F, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, Marsch-Martínez N, Meyers BC, Green PJ, de Folter S (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5:3722PubMedGoogle Scholar
  9. Chen X, Li X, Guo J, Zhang P, Zeng W (2017) The roles of microRNAs in regulation of mammalian spermatogenesis. J Anim Sci Biotechnol 8:35PubMedPubMedCentralGoogle Scholar
  10. Choi K, Zhao X, Kelly KA, Venn O, Higgins JD, Yelina NE, Hardcastle TJ, Ziolkowski PA, Copenhaver GP, Franklin FC, McVean G, Henderson IR (2013) Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat Genet 45:1327–1336PubMedGoogle Scholar
  11. D’Ario M, Griffiths-Jones S, Kim M (2017) Small RNAs: big impact on plant development. Trends Plant Sci 22:1056–1068PubMedGoogle Scholar
  12. Djami-Tchatchou AT, Sanan-Mistra N, Ntushelo K, Dubery IA (2017) Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection. Frontiers Plant Sci 8:378Google Scholar
  13. Dukowic-Schulze S, Sundararajan A, Ramaraj T, Kianian S, Pawlowski WP, Mudge J, Chen C (2016) Novel meiotic miRNAs and indications for a role of phasiRNAs in meiosis. Frontiers Plant Sci 7:762Google Scholar
  14. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202PubMedGoogle Scholar
  15. Greenlee AR, Shiao MS, Snyder E, Buaas FW, Gu T, Stearns TM, Sharma M, Murchison EP, Puente GC, Braun RE (2012) Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1. PLoS One 7:e46359PubMedPubMedCentralGoogle Scholar
  16. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:1193–1197PubMedGoogle Scholar
  17. Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20:1709–1714PubMedPubMedCentralGoogle Scholar
  18. Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, O’Carroll D, Das P, Tarakhovsky A, Miska EA, Surani MA (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3:e1738PubMedPubMedCentralGoogle Scholar
  19. Hilz S, Fogarty EA, Modzelewski AJ, Cohen PE, Grimson A (2017) Transcriptome profiling of the developing male germ line identifies the miR-29 family as a global regulator during meiosis. RNA Biol 14:219–235PubMedGoogle Scholar
  20. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110PubMedGoogle Scholar
  21. Iwakawa HO, Tomari Y (2015) The functions of MicroRNAs: mRNA decay and translational repression. Trends Cell Biol 25:651–665PubMedGoogle Scholar
  22. Jacobsen SE, Running MP, Meyerowitz EM (1999) Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126:5231–5243PubMedGoogle Scholar
  23. Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan GL, Walbot V, Sundaresan V, Vance V, Bowman LH (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19:1429–1440PubMedPubMedCentralGoogle Scholar
  24. Jones AM, Chory J, Dangl JL, Estelle M, Jacobsen SE, Meyerowitz EM, Nordborg M, Weigel D (2008) The impact of Arabidopsis on human health: diversifying our portfolio. Cell 133:939–943PubMedPubMedCentralGoogle Scholar
  25. Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N (2011) Dicer is required for haploid male germ cell differentiation in mice. PLoS One 6:e24821PubMedPubMedCentralGoogle Scholar
  26. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367PubMedGoogle Scholar
  27. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419PubMedGoogle Scholar
  28. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798PubMedGoogle Scholar
  29. Lian H, Li X, Liu Z, He Y (2013) HYL1 is required for establishment of stamen architecture with four microsporangia in Arabidopsis. J Exp Bot (11):3307–3410Google Scholar
  30. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate miRNAs genes. Science 299:1540PubMedGoogle Scholar
  31. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441PubMedGoogle Scholar
  32. Liu Y, Niu M, Yao C, Hai Y, Yuan Q, Liu Y, Guo Y, Li Z, He Z (2015) Fractionation of human spermatogenic cells using STA-PUT gravity sedimentation and their miRNA profiling. Sci Rep 5:8084PubMedPubMedCentralGoogle Scholar
  33. Liu YC, Chen WL, Kung WH (2017) Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi. BMC Genomics 18:112PubMedPubMedCentralGoogle Scholar
  34. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056PubMedGoogle Scholar
  35. Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–1058PubMedPubMedCentralGoogle Scholar
  36. Ma X, Cao X, Mo B, Chen X (2013) Trip to ER: MicroRNA-mediated translational repression in plants. RNA Biol 10:1586–1592PubMedPubMedCentralGoogle Scholar
  37. Maatouk DM, Loveland KL, McManus MT, Moore K, Harfe BD (2008) Dicer1 is required for differentiation of the mouse male germline. Biol Reprod 79:696–703PubMedGoogle Scholar
  38. Mansoori B, Mohammadi A, Shirjang S, Baradaran B (2017) MicroRNAs in the diagnosis and treatment of cancer. Immunol Investig 46:880–897Google Scholar
  39. McCreight JC, Schneider SE, Wilburn DB, Swanson WJ (2017) Evolution of miRNA in primates. PLoS One 12:e0176596PubMedPubMedCentralGoogle Scholar
  40. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197PubMedGoogle Scholar
  41. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H (2013) Birth and expression evolution of mammalian microRNAs. Genome Res 23:34–45PubMedPubMedCentralGoogle Scholar
  42. Mishra A, Bohra A (2018) Non-coding RNAs and plant sterility: current knowledge and future prospects. Plant Cell Rep 37:177–191PubMedGoogle Scholar
  43. Mochizuki K, Gorovsky MA (2005) A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev 19:77–89PubMedPubMedCentralGoogle Scholar
  44. Modzelewski AJ, Holmes S, Hilz S, Grimson A, Cohen PE (2012) AGO4 regulates entry to meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev Cell 23:251–264PubMedPubMedCentralGoogle Scholar
  45. Modzelewski AJ, Hilz S, Crate EA, Schweidenback CT, Fogarty EA, Grenier JK, Freire R, Cohen PE, Grimson A (2015) Dgcr8 and Dicer are essential for sex chromosome integrity during meiosis in males. J Cell Sci 128:2314–2327PubMedPubMedCentralGoogle Scholar
  46. Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ (2007) Critical roles for Dicer in the female germline. Genes Dev 21:682–693PubMedPubMedCentralGoogle Scholar
  47. Oliver C, Pradillo M, Jover-Gil S, Cuñado N, Ponce MR, Santos JL (2017) Loss of function of Arabidopsis micro-RNA machinery genes impairs fertility, and has effects on homologous recombination and meiotic chromosome dynamics. Sci Reports 7:9280Google Scholar
  48. Papaioannou MD, Pitetti JL, Ro S, Park C, Aubry F, Schaad O, Vejnar CE, Kühne F, Descombes P, Zdobnov EM, McManus MT, Guillou F, Harfe BD, Yan W, Jégou B, Nef S (2009) Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 326:250–259PubMedGoogle Scholar
  49. Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, van der Winden J, Matzke M, Matzke AJ (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132:1382–1390PubMedPubMedCentralGoogle Scholar
  50. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102:3691–3696PubMedPubMedCentralGoogle Scholar
  51. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495PubMedPubMedCentralGoogle Scholar
  52. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626PubMedPubMedCentralGoogle Scholar
  53. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520PubMedGoogle Scholar
  54. Romero Y, Meikar O, Papaioannou MD, Conne B, Grey C, Weier M, Pralong F, De Massy B, Kaessmann H, Vassalli JD, Kotaja N, Nef S (2011) Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One 6:e25241PubMedPubMedCentralGoogle Scholar
  55. Schnickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974Google Scholar
  56. Schott J, Stoecklin G (2010) Networks controlling mRNA decay in the immune system. Wiley Interdiscip Rev RNA 1:432–456PubMedGoogle Scholar
  57. Shabalina SA, Koonin EV (2016) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587Google Scholar
  58. Song R, Hennig G, Wu Q, Jose C, Zheng H, Yan W (2011) Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci U S A 108:13159–13164PubMedPubMedCentralGoogle Scholar
  59. Song X, Li P, Zhai J, Zhou M, Ma L, Liu B, Jeong DH, Nakano M, Cao S, Liu C, Chu C, Wang XJ, Green PJ, Meyers BC, Cao X (2012) Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J 69:462–474PubMedGoogle Scholar
  60. Stein P, Rozhkov NV, Li F, Cárdenas FL, Davydenko O, Vandivier LE, Gregory BD, Hannon GJ, Schultz RM (2015) Essential role for endogenous siRNAs during meiosis in mouse oocytes. PLoS Genet 11:e1005013PubMedPubMedCentralGoogle Scholar
  61. Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R (2010) MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20:271–277PubMedPubMedCentralGoogle Scholar
  62. Tan T, Zhang Y, Ji W, Zheng P (2014) miRNA signature in mouse spermatogonial stem cells revealed by high-throughput sequencing. Biomed Res Int 154251:1–11Google Scholar
  63. Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21:644–648PubMedPubMedCentralGoogle Scholar
  64. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63PubMedPubMedCentralGoogle Scholar
  65. Tarver JE, Donoghue PCJ, Peterson KJ (2012) Do miRNAs have a deep evolutionary history? BioEssays 34:857–866PubMedGoogle Scholar
  66. Taylor RS, Tarver JE, Hiscock SJ, Donoghue PC (2014) Evolutionary history of plant microRNAs. Trends Plant Sci 19:175–182PubMedGoogle Scholar
  67. Telfer A, Bollman KM, Poethig RS (1997) Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124:645–654PubMedGoogle Scholar
  68. Telfer A, Poethig RS (1998) HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development 125:1889–1898PubMedGoogle Scholar
  69. Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20:1732–1743PubMedPubMedCentralGoogle Scholar
  70. Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM, Yan W (2012) The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287:25173–25190Google Scholar
  71. Xu XM, Møller SG (2011) The value of Arabidopsis research in understanding human disease states. Curr Opin Biotechnol 22:300–307PubMedGoogle Scholar
  72. Yang L, Liu Z, Lu F, Dong A, Huang H (2006) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850PubMedGoogle Scholar
  73. Yelina NE, Choi K, Chelysheva L, Macaulay M, de Snoo B, Wijnker E, Miller N, Drouaud J, Grelon M, Copenhaver GP, Mezard C, Kelly KA, Henderson IR (2012) Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet 8:e1002844PubMedPubMedCentralGoogle Scholar
  74. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016PubMedPubMedCentralGoogle Scholar
  75. You C, Cui J, Wang H, Qi X, Kuo LY, Ma H, Gao L, Mo B, Chen X (2017) Conservation and divergence of small RNA pathways and miRNAs in land plants. Genome Biol 18:158PubMedPubMedCentralGoogle Scholar
  76. Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935PubMedPubMedCentralGoogle Scholar
  77. Zhai J, Zhang H, Arikit S, Huang K, Nan GL, Walbot V, Meyers BC (2015) Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci U S A 112:3146–3151PubMedPubMedCentralGoogle Scholar
  78. Zhao Y, Cong L, Lukiw WJ (2017) Plant and animal microRNAs (miRNAs) and their potential for inter-kingdom communication. Cell Mol Neurobiol 38:133–140PubMedGoogle Scholar
  79. Zimmermann C, Romero Y, Warnefors M, Bilican A, Borel C, Smith LB, Kotaja N, Kaessmann H, Nef S (2014) Germ cell-specific targeting of DICER or DGCR8 reveals a novel role for endo-siRNAs in the progression of mammalian spermatogenesis and male fertility. PLoS One 9:e107023PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Genetics, Physiology and Microbiology, Faculty of BiologyComplutense UniversityMadridSpain

Personalised recommendations