Chromosome Research

, Volume 27, Issue 1–2, pp 5–17 | Cite as

Dosage effects of human ribosomal genes (rDNA) in health and disease

  • L. N. PorokhovnikEmail author
  • N. A. Lyapunova


Human ribosomal RNA genes encoding a pre-transcript of the three major ribosomal RNA (18S, 5.8S, and 28S rRNA) are tandemly repeated in human genome. Their total copy number varies from 250 to 670 per diploid genome with a mean of approximately 420 copies, but only a fraction of them is transcriptionally active. The functional consequences of human ribosomal RNA gene dosage are not widely known and often assumed to be negligible. Here, we review the facts of rRNA gene dosage effects on normal growth and aging, stress resistance of healthy individuals, and survivability of patients with chromosomal abnormalities, as well as on the risk and severity of some multifactorial diseases with proven genetic predisposition. An original hypothesis that rRNA gene dosage can be a modulating factor involved in the pathogenesis of schizophrenia and rheumatoid arthritis is put forward.


rDNA Copy number Dosage effect Ribosomal gene Ribosomal repeat Schizophrenia Autism Growth Proteostasis 



Alzheimer’s disease


silver-stained metaphase nucleolus organizer region


autism spectrum disorders


copy number variation


coefficient of variation


Down’s syndrome


family mental retardation protein


human leukocyte antigen


multifactorial diseases


nucleolus organizer region


nonradioactive quantitative dot-hybridization


quantitative real-time polymerase chain reaction


rheumatoid arthritis


ribosomal DNA


ribosomal RNA


standard deviation




total cellular RNA


Authors’ contribution

LNP and NAL equally contributed in writing this review, including source material selection, their arrangement in logical sequence, putting forward hypotheses and future prospects, etc. LNP translated the manuscript to English. Both authors participated in critical revision and approved the final manuscript before submission.


  1. Agrawal S, Ganley AR (2016) Complete sequence construction of the highly repetitive ribosomal RNA gene repeats in eukaryotes using whole genome sequence data. Methods Mol Biol 1455:161–181Google Scholar
  2. Bloom SE, Goodpasture C (1976) An improved technique for selective silver staining of nucleolar organizer regions. Hum Genet 34(2):199–206Google Scholar
  3. Bross K, Krone W (1972) On the number of ribosomal RNA genes in man. Humangenetik 14(2):137–141Google Scholar
  4. Bross K, Dittes H, Krone W, Schmid M, Vogel W (1973) Biochemical and cytogenetic studies on the nucleolus organizing regions (NOR) of man. I. Comparison of trisomy 21 with balanced translocations t(DqGq). Humangenetik 20(3):223–229Google Scholar
  5. Chen E, Joseph S (2015) Fragile X mental retardation protein: a paradigm for translational control by RNA-binding proteins. Biochimie 114:147–154. Google Scholar
  6. Chestkov IV, Jestkova EM, Ershova ES, Golimbet VE, Lezheiko TV, Kolesina NY, Porokhovnik LN, Lyapunova NA, Izhevskaya VL, Kutsev SI, Veiko NN, Kostyuk SV (2018) Abundance of ribosomal RNA gene copies in the genomes of schizophrenia patients. Schizophr Res.
  7. Cheung C, Yu K, Fung G, Leung M, Wong C, Li Q, Sham P, Chua S, McAlonan G (2010) Autistic disorders and schizophrenia: related or remote? An anatomical likelihood estimation. PLoS One 5(8):e12233. Google Scholar
  8. Ciaccio C, Fontana L, Milani D, Tabano S, Miozzo M, Esposito S (2017) Fragile X syndrome: a review of clinical and molecular diagnoses. Ital J Pediatr 43(1):39. Google Scholar
  9. de Capoa A, Aleixandre C, Felli MP, Ravenna L, Costantino MA, Giancotti P, Vicenti O, Poggesi I, Grappelli C, Miller DA (1991) Inheritance of ribosomal gene activity and level of DNA methylation of individual gene clusters in a three generation family. Hum Genet 88(2):146–152Google Scholar
  10. de Lacy N, King BH (2013) Revisiting the relationship between autism and schizophrenia: toward an integrated neurobiology. Annu Rev Clin Psychol 9:555–587. Google Scholar
  11. Delany ME, Muscarella DE, Bloom SE (1994) Effects of rRNA gene copy number and nucleolar variation on early development: inhibition of gastrulation in rDNA-deficient chick embryos. J Hered 85(3):211–217Google Scholar
  12. Ding Q, Markesbery WR, Chen Q, Li F, Keller JN (2005) Ribosome dysfunction is an early event in Alzheimer’s disease. J Neurosci 25:9171–9175Google Scholar
  13. Eaton WW, Hayward C, Ram R (1992) Schizophrenia and rheumatoid arthritis: a review. Schizophr Res 6:181–192Google Scholar
  14. Eaton WW, Byrne M, Ewald H, Mors O, Chen CY, Agerbo E, Mortensen PB (2006) Association of schizophrenia and autoimmune diseases: linkage of Danish national registers. Am J Psychiatry 163:521–528Google Scholar
  15. Egolina NA, Lyapunova NA, Veiko NN, Mkhitarova EV, Tsvetkova TG et al (2007) Human ageing is not accompanied by decreasing of genomic dosage of ribosomal genes. Thes. 6th Europ Congr “healthy and active ageing for all Europeans”. Adv Gerontol 20(3):30Google Scholar
  16. Erickson CA, Davenport MH, Schaefer TL, Wink LK, Pedapati EV, Sweeney JA, Fitzpatrick SE, Brown WT, Budimirovic D, Hagerman RJ, Hessl D, Kaufmann WE, Berry-Kravis E (2017) Fragile X targeted pharmacotherapy: lessons learned and future directions. J Neurodev Disord 9:7. Google Scholar
  17. Gao R, Penzes P (2015) Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 15(2):146–167Google Scholar
  18. Gaubatz J, Prashad N, Cutler RG (1976) Ribosomal RNA gene dosage as a function of tissue and age for mouse and human. Biochim Biophys Acta 418(3):358–375Google Scholar
  19. Gibbons JG, Branco AT, Yu S, Lemos B (2014) Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nat Commun 5:4850Google Scholar
  20. Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, Weatherill DB, Vasuta C, Yee S et al (2013) Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493(7432):371–377. Google Scholar
  21. Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma 53(1):37–50Google Scholar
  22. Gorwood P, Pouchot J, Vinceneux P, Puéchal X, Flipo RM, de Bandt M, Adès J, Club Rhumatisme et Inflammation (2004) Rheumatoid arthritis and schizophrenia: a negative association at a dimensional level. Schizophr Res 66(1):21–29Google Scholar
  23. Grummt I, Pikaard CS (2003) Epigenetic silencing of RNA polymerase I transcription. Nat Rev Mol Cell Biol 4:641–649Google Scholar
  24. Halle JP, Müller S, Simm A, Adam G (1997) Copy number, epigenetic state and expression of the rRNA genes in young and senescent rat embryo fibroblasts. Eur J Cell Biol 74(3):281–288Google Scholar
  25. Hallgren J, Pietrzak M, Rempala G, Nelson PT, Hetman M (2014) Neurodegeneration-associated instability of ribosomal DNA. Biochim Biophys Acta 1842(6):860–868. Google Scholar
  26. Hartung M, Keeling JW, Patel C, Bobrow M, Stahl A (1983) Nucleoli, micronucleoli and nucleolus-like structures in human oocytes at meiotic prophase 1 studied by the silver-NOR technique. Cytogenet Cell Genet 35(1):2–8Google Scholar
  27. Hein N, Sanij E, Quin J, Hannan KM, Ganley ARD, Hannan RD (2012) The nucleolus and ribosomal genes in aging and senescence. In: senescence. Nagata T, ed. ISBN: 978-953-51-0144-4. InTech, doi: Available at:
  28. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015Google Scholar
  29. Hubbell HR (1985) Silver staining as an indicator of active ribosomal genes. Stain Technol 60(5):285–294Google Scholar
  30. Iacono D, O’Brien R, Resnick SM, Zonderman AB, Pletnikova O et al (2008) Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol 67:578–589Google Scholar
  31. Johnson LK, Johnson RW, Strehler BL (1975) Cardiac hypertrophy, aging and changes in cardiac ribosomal RNA gene dosage in man. J Mol Cell Cardiol 7(2):125–133Google Scholar
  32. Kamanli A, Naziroglu M, Aydilek N, Hacievliyagil C (2004) Plasma lipid peroxidation and antioxidant levels in patients with rheumatoid arthritis. Cell Biochem Funct 22:53–57Google Scholar
  33. Kelleher RJ 3rd, Bear MF (2008) The autistic neuron: troubled translation? Cell 135(3):401–406. Google Scholar
  34. Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66(4):1328–1333Google Scholar
  35. Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U (2001) Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet 10(4):329–338Google Scholar
  36. Larson DE, Zahradka P, Sells BH (1991) Control points in eukaryotic ribosome biogenesis. Biochem Cell Biol 69(1):5–22Google Scholar
  37. Liapunova NA, Kravets-Mandron IA, Tsvetkova TG (1998) Cytogenetic of nucleolar organizer regions (NOR) of human chromosomes: identification of four morphofunctional variants of NOR, their inter-individual and interchromosomal distribution. Russ J Genet 34(9):1095–1102Google Scholar
  38. Liapunova NA, Egolina NA, Tsvetkova TG, Veĭko NN et al (2000) Ribosomal genes in the human genome: contribution to genetic individuality and phenotypic manifestation of gene dosage. Vestn Ross Akad Med Nauk 5:19–23Google Scholar
  39. Lyapunova NA, Veiko NN (2010) Ribosomal genes in the human genome: identification of four fractions, their organization in the nucleolus and metaphase chromosomes. Russ J Genet 46(9):1070–1073Google Scholar
  40. Lyapunova NA, Porokhovnik LN, Kosyakova NV, Mandron IA, Tsvetkova TG (2017) Effects of the copy number of ribosomal genes (genes for rRNA) on viability of subjects with chromosomal abnormalities. Gene 611:47–53Google Scholar
  41. Malinovskaya EM, Smirnova TD, Egolina NA, Tsvetkova TG et al (2008) Changes in human ribosomal genes ensemble with ageing. Med Genet (Russ) 7(2):10–16Google Scholar
  42. Mandron IA, Suchilina MA, Tsvetkova TG, Kosyakova NV et al (2010) Genomic dosage of active ribosomal genes and severity of dentogenous phlegmons. Materials of VI Congress of Russian Society of medical geneticists Medical Genetics (Russ) Special issue, 110Google Scholar
  43. Markovic VD, Worton RG, Berg JM (1978) Evidence for inheritance of silver-stained nucleolus organizer regions. Hum Genet 41(2):181–187Google Scholar
  44. McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157. Google Scholar
  45. Mohan J, Ritossa FM (1970) Regulation of ribosomal RNA synthesis and its bearing on the bobbed phenotype in Drosophila melanogaster. Dev Biol 22(3):495–512Google Scholar
  46. Morukov BV, Lyapunova NA, Tsvetkova TG, Veĭko NN, Ershova ES et al (2008) Determination of genome dose of active ribosome genes and several quantitative parameters of extracellular DNA in test-subjects of the experiment with 7-day immersion. Aviakosm Ekolog Med 42(5):60–64Google Scholar
  47. Oken RJ, Schulzer M (1999) At issue: schizophrenia and rheumatoid arthritis: the negative association revisited. Schizophr Bull 25(4):625–638Google Scholar
  48. Ono T, Okada S, Kawakami T, Honjo T, Getz MJ (1985) Absence of gross change in primary DNA sequence during aging process of mice. Mech Ageing Dev 32(2–3):227–234Google Scholar
  49. Payão SL, Smith M, Kormann-Bortolotto MH, Toniolo J (1994) Investigation of the nucleolar organizer regions in Alzheimer's disease. Gerontology 40(1):13–17Google Scholar
  50. Peterson CR, Cryar JR, Gaubatz JW (1984) Constancy of ribosomal RNA genes during aging of mouse heart cells and during serial passage of WI-38 cells. Arch Gerontol Geriatr 3(2):115–125Google Scholar
  51. Pietrzak M, Rempala G, Nelson PT, Zheng JJ, Hetman M (2011) Epigenetic silencing of nucleolar rRNA genes in Alzheimer’s disease. PLoS One 6(7):e22585Google Scholar
  52. Pocklington AJ, O'Donovan M, Owen MJ (2014) The synapse in schizophrenia. Eur J Neurosci 39(7):1059–1067Google Scholar
  53. Porokhovnik LN (2013) The simulation of organization of active ribosomal genes in human genome and of phenotypic manifestations of their copy number. Doctoral (Biol.) Dissertation Theses, Moscow: Research Centre for Medical Genetics. Russ Acad Med Sci. 141 pGoogle Scholar
  54. Porokhovnik LN, Viktorov VV, Egolina NA, Tsvetkova TG, Lyapunova NA (2011) Cluster size polymorphism of active human ribosomal genes and simulation of the conditions of its stability through generations. Russ J Genet 47(12):1479–1486Google Scholar
  55. Prokopowich CD, Gregory TR, Crease TJ (2003) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46(1):48–50Google Scholar
  56. Rainey FA, Ward-Rainey NL, Janssen PH, Hippe H (1996) Clostridium paradoxum DSM 7308(T) contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142:2087–2095Google Scholar
  57. Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72(4):686–727. Google Scholar
  58. Ritossa FM (1968) Unstable redundancy of genes for ribosomal RNA. Proc Natl Acad Sci U S A 60(2):509–516Google Scholar
  59. Ritossa FM, Atwood KC, Lindsley DL, Spiegelman S (1966) On the chromosomal distribution of DNA complementary to ribosomal and soluble RNA. Natl Cancer Inst Monogr 23:449–471Google Scholar
  60. Roller BR, Stoddard SF, Schmidt TM (2016) Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol 1(11):16160. Google Scholar
  61. Santini E, Huynh TN, MacAskill AF, Carter AG, Pierre P, Ruggero D, Kaphzan H, Klann E (2013) Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493(7432):411–415. Google Scholar
  62. Santoro R, Grummt I (2005) Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation. Mol Cell Biol 25(7):2539–2546Google Scholar
  63. Sato A (2016) mTOR, a potential target to treat autism spectrum disorder. CNS Neurol Disord Drug Targets 15(5):533–543Google Scholar
  64. Schumacher J, Laje G, Abou Jamra R, Becker T et al (2009) The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations. Hum Mol Genet 18(14):2719–2727Google Scholar
  65. Shubaeva NO (2004) Molecular genetic characteristics of ribosomal genes and cell death rates in patient with rheumatoid arthritis. Doctoral (Biol.) Dissertation Theses, Moscow: Research Centre for Medical Genetics. Russ Acad Med Sci. 131 pGoogle Scholar
  66. Sozansky OA, Zakharov AF, Benjush VA (1984) Intercellular NOR-AG variability in man. Hum Genet 68:229–302Google Scholar
  67. Sozansky OA, Zakharov AF, Terekhov SM (1985) Intercellular NOR-ag variability in man II. Search for determining factors, clonal analysis. Hum Genet 69:151–156Google Scholar
  68. Strehler BL, Chang MP, Johnson LK (1979) Loss of hybridizable ribosomal DNA from human post-mitotic tissues during aging: I. age-dependent loss in human myocardium. Mech Ageing Dev 11(5–6):371–378Google Scholar
  69. Stults DM, Kitten MW, Pierce НН, Pierce AJ (2008) Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res 18(1):13–18Google Scholar
  70. Su MH, Delany ME (1998) Ribosomal RNA gene copy number and nucleolar-size polymorphisms within and among chicken lines selected for enhanced growth. Poult Sci 77(12):1748–1754Google Scholar
  71. Taylor EF, Martin-Deleon PA (1981) Familial silver staining patterns of human nucleolus organizer regions (NORs). Am J Hum Genet 33(1):67–76Google Scholar
  72. Torrey EF, Yolken RH (2001) The schizophrenia-rheumatoid arthritis connection: infectious, immune, or both? Brain Behav Immun 15(4):401–410Google Scholar
  73. Veale DJ, Orr C, Fearon U (2017) Cellular and molecular perspectives in rheumatoid arthritis. Semin Immunopathol 39(4):343–354. Google Scholar
  74. Veiko NN (2001) Structural and Functional Organization of Human Ribosomal Repeats. Doctoral (Biol.) Dissertation Theses, Moscow: Research Centre for Medical Genetics, Russ Acad Med Sci. 258 pGoogle Scholar
  75. Veĭko NN, Liapunova NA, Bogush AV, Tsvetkova TG, Gromova EV (1996) Determination of the number of ribosomal genes in individual human genomes. Comparison of the results of molecular and cytogenetic analysis. Mol Biol (Moscow) 30(5):1076–1085Google Scholar
  76. Veĭko NN, Egolina NA, Radzivil GG et al (2003) Quantitative analysis of repetitive sequences in human genomic DNA and detection of an elevated ribosomal repeat copy number in patients with schizophrenia (the results of molecular and cytogenetic analysis). Mol Biol (Moscow) 37(3):409–419Google Scholar
  77. Veiko NN, Shubaeva NO, Tsvetkova TG, Mandron IA et al (2005a) The peculiarities of quantitative characteristics of the ribosomal gene complex in patient with severe forms of rheumatoid arthritis. Med Genet (Russ) 4(4):166–167Google Scholar
  78. Veĭko NN, Terekhov SM, Shubaeva NO, Simirnova TD, Ivanova SM et al (2005b) Early and late responses to oxidative stress in human dermal fibroblasts of healthy donors and rheumatoid arthritis patients. Relationship between the cell death rate and the genomic dosage of active ribosomal genes. Mol Biol (Moscow) 39(2):264–275Google Scholar
  79. Velazquez M, Visedo G, Ludena P et al (1991) Cytogenetic analysis of a human familial 15p + marker chromosome. Genome 34(5):827–829Google Scholar
  80. Zafiropoulos A, Tsentelierou E, Linardakis M, Kafatos A, Spandidos DA (2005) Preferential loss of 5S and 28S rDNA genes in human adipose tissue during ageing. Int J Biochem Cell Biol 37(2):409–415Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Research Centre for Medical GeneticsMoscowRussia

Personalised recommendations