Chromosome Research

, Volume 26, Issue 1–2, pp 1–3 | Cite as

Transposable elements and the multidimensional genome

  • Peter A. Larsen

There is no such thing as “junk DNA.” Indeed, a suite of discoveries made over the past few decades have put to rest this misnomer and have identified many important roles that so-called junk DNA provides to both genome structure and function (this special issue; Biémont and Vieira 2006; Jeck et al. 2013; Elbarbary et al. 2016; Akera et al. 2017; Chen and Yang 2017; Chuong et al. 2017). Nevertheless, given the historical focus on coding regions of the genome, our understanding of the biological function of non-coding regions (e.g., repetitive DNA, transposable elements) remains somewhat limited, and therefore, all those enigmatic and poorly studied regions of the genome that were once identified as junk are instead best viewed as genomic “dark matter.” This special issue of Chromosome Researchdelves into the exciting world of genomic dark matter by focusing on the contribution that transposable elements have made to genome innovation and function. Collectively, these papers address a...


epigenetics genomics gene regulation genome innovation mobile elements sporadic disease RNA biology 


  1. Akera T, Chmátal L, Trimm E, Yang K, Aonbangkhen C, Chenoweth DM, Janke C, Schultz RM, Lampson MA (2017) Spindle asymmetry drives non-Mendelian chromosome segregation. Science 358:668–672. CrossRefPubMedGoogle Scholar
  2. Belancio VP, Roy-Engel AM, Deininger PL (2010) All y’all need to know ‘bout retroelements in cancer. Semin Cancer Biol 20:200–210. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524. CrossRefPubMedGoogle Scholar
  4. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 130:234–239CrossRefPubMedGoogle Scholar
  5. Burgess DJ (2017) Rich pore methods for DNA methylation detection. Nat Rev Genet 18:209–209. CrossRefPubMedGoogle Scholar
  6. Chen LL, Yang L (2017) ALUternative regulation for gene expression. Trends Cell Biol 27:480–490.
  7. Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18:71–86. CrossRefPubMedGoogle Scholar
  8. Elbarbary RA, Lucas BA, Maquat LE (2016) Retrotransposons as regulators of gene expression. Science 351:aac7247. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen CA, Schmitt AD, Espinoza CA, Ren B (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503:290–294. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jintaridth P, Mutirangura A (2010) Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol Genomics 41:194–200CrossRefPubMedGoogle Scholar
  13. Kazazian HH, Moran JV (2017) Mobile DNA in health and disease. N Engl J Med 377:361–370. CrossRefPubMedGoogle Scholar
  14. Larkin J, Henley RY, Jadhav V, Korlach J, Wanunu M (2017) Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nat Nanotechnol 12:1169–1175. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Larsen PA, Lutz MW, Hunnicutt KE, Mihovilovic M, Saunders AM, Yoder AD, Roses AD (2017) The Alu neurodegeneration hypothesis: a primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease. Alzheimers Dement 13:828–838. CrossRefPubMedGoogle Scholar
  16. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Neven KY, Piola M, Angelici L, Cortini F, Fenoglio C, Galimberti D, Pesatori AC, Scarpini E, Bollati V (2016) Repetitive element hypermethylation in multiple sclerosis patients. BMC Genet 17:84. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Schneider I, Kugel H, Redlich R, Grotegerd D, Bürger C, Bürkner PC, Opel N, Dohm K, Zaremba D, Meinert S, Schröder N, Straßburg AM, Schwarte K, Schettler C, Ambrée O, Rust S, Domschke K, Arolt V, Heindel W, Baune BT, Zhang W, Dannlowski U, Hohoff C (2017) Association of serotonin transporter gene AluJb methylation with major depression, amygdala responsiveness, 5-HTTLPR/rs25531 polymorphism, and stress. Neuropsychopharmacology.

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyDuke UniversityDurhamUSA

Personalised recommendations