Advertisement

Chromosome Research

, Volume 27, Issue 1–2, pp 31–40 | Cite as

The chromatin landscape of the ribosomal RNA genes in mouse and human

  • Tom MossEmail author
  • Jean-Clement Mars
  • Michel G. Tremblay
  • Marianne Sabourin-Felix
Review

Abstract

The rRNA genes of mouse and human encode the three major RNAs of the ribosome and as such are essential for growth and development. These genes are present in high copy numbers and arranged as direct repeats at the Nucleolar Organizer Regions on multiple chromosomes. Not all the rRNA genes are transcriptionally active, but the molecular mechanisms that determine activity are complex and still poorly understood. Recent studies applying a novel Deconvolution Chromatin Immunoprecipitation (DChIP-Seq) technique in conjunction with conditional gene inactivation provide new insights into the structure of the active rRNA genes and question previous assumptions on the role of chromatin and histone modifications. We suggest an alternative model for the active rRNA gene chromatin and discuss how this structure is determined and maintained.

Keywords

RNA polymerase I (RPI, PolI, Polr1) RPI associated factor RRN3 (TIF-IA or TIF1A) Upstream binding factor (UBF/UBTF) Ribosome biogenesis Ribosomal RNA (rRNA) genes Ribosomal DNA (rDNA) Active rDNA chromatin Silent rDNA chromatin 

Abbreviations

RPI

RNA polymerase I, POLR1, POL1

RPII

RNA polymerase II, POLR2, POL2

RRN3

RPI associated factor

rRNA

Ribosomal RNA

rDNA

Ribosomal DNA

SL1

RNA polymerase 1-specific TBP-TAF complex

UBF

Upstream binding factor, UBTF

Notes

Author statement

TM conceived the study and wrote the manuscript, J-CM and MGT performed experimental research, and MS-F analyzed the data from ChIP-Seq. All authors read and approved the manuscript.

Funding information

This work was funded by operating grants from the Canadian Institutes of Health Research (CIHR, MOP12205/PJT153266) and the National Science and Engineering Council (NSERC) of Canada. The Research Centre of the Québec University Hospital Centre (CHU de Québec) is supported by the Fonds de Recherche du Québec—Santé (FRQS).

References

  1. Bazett-Jones DP, Leblanc B, Herfort M, Moss T (1994) Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF. Science 264:1134–1137CrossRefGoogle Scholar
  2. Billon P, Cote J (2012) Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. Biochim Biophys Acta 1819:290–302.  https://doi.org/10.1016/j.bbagrm.2011.10.004 CrossRefGoogle Scholar
  3. Bilodeau S, Young RA (2011) ChIP-Seq data for histone marks in mouse embryonic fibroblasts. (data accessible at NCBI GEO database, accession GSE26657)Google Scholar
  4. Birch JL, Zomerdijk JC (2008) Structure and function of ribosomal RNA gene chromatin. Biochem Soc Trans 36:619–624.  https://doi.org/10.1042/BST0360619 CrossRefGoogle Scholar
  5. Bruce K, Myers FA, Mantouvalou E, Lefevre P, Greaves I, Bonifer C, Tremethick DJ, Thorne AW, Crane-Robinson C (2005) The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res 33:5633–5639.  https://doi.org/10.1093/nar/gki874 CrossRefGoogle Scholar
  6. Brunelle M, Nordell Markovits A, Rodrigue S, Lupien M, Jacques P-É, Gévry N (2015) The histone variant H2AZ is an important regulator of enhancer activity. Nucleic Acids Res 43:9742–9756.  https://doi.org/10.1093/nar/gkv825 Google Scholar
  7. Bulut-Karslioglu A, de la Rosa-Velázquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, Galán C, Winter GE, Engist B, Gerle B, O’Sullivan RJ, Martens JHA, Walter J, Manke T, Lachner M, Jenuwein T (2014) Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 55:277–290.  https://doi.org/10.1016/j.molcel.2014.05.029 CrossRefGoogle Scholar
  8. Conconi A, Widmer RM, Koller T, Sogo JM (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753–761CrossRefGoogle Scholar
  9. Dammann R, Lucchini R, Koller T, Sogo JM (1993) Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res 21:2331–2338CrossRefGoogle Scholar
  10. De Winter RF, Moss T (1987) A complex array of sequences enhances ribosomal transcription in Xenopus laevis. J Mol Biol 196:813–827CrossRefGoogle Scholar
  11. Dev VG, Tantravahi R, Miller DA, Miller OJ (1977) Nucleolus organizers in Mus musculus subspecies and in the RAG mouse cell line. Genetics 86:389–398Google Scholar
  12. Evers R, Grummt I (1995) Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I. Proc Natl Acad Sci U S A 92:5827–5831CrossRefGoogle Scholar
  13. French SL, Osheim YN, Cioci F, Nomura M, Beyer AL (2003) In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol Cell Biol 23:1558–1568CrossRefGoogle Scholar
  14. Gagnon-Kugler T, Langlois F, Stefanovsky V, Lessard F, Moss T (2009) Loss of human ribosomal gene CpG methylation enhances cryptic RNA polymerase II transcription and disrupts ribosomal RNA processing. Mol Cell 35:414–425.  https://doi.org/10.1016/j.molcel.2009.07.008 CrossRefGoogle Scholar
  15. Griesenbeck J, Tschochner H, Grohmann D (2017) Structure and function of RNA polymerases and the transcription machineries. Subcell Biochem 83:225–270.  https://doi.org/10.1007/978-3-319-46503-6_9 CrossRefGoogle Scholar
  16. Grummt I (2003) Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 17:1691–1702CrossRefGoogle Scholar
  17. Grummt I, Pikaard CS (2003) Epigenetic silencing of RNA polymerase I transcription. Nat Rev Mol Cell Biol 4:641–649CrossRefGoogle Scholar
  18. Hamdane N, Stefanovsky VY, Tremblay MG, Németh A, Paquet E, Lessard F, Sanij E, Hannan R, Moss T (2014) Conditional inactivation of upstream binding factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body. PLoS Genet 10:e1004505.  https://doi.org/10.1371/journal.pgen.1004505 CrossRefGoogle Scholar
  19. Hamperl S, Wittner M, Babl V, Perez-Fernandez J, Tschochner H, Griesenbeck J (2013) Chromatin states at ribosomal DNA loci. Biochim Biophys Acta.  https://doi.org/10.1016/j.bbagrm.2012.12.007
  20. Heliot L, Mongelard F, Klein C, O'Donohue MF, Chassery JM, Robert-Nicoud M, Usson Y (2000) Nonrandom distribution of metaphase AgNOR staining patterns on human acrocentric chromosomes. J Histochem Cytochem 48:13–20CrossRefGoogle Scholar
  21. Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci U S A 69:3394–3398CrossRefGoogle Scholar
  22. Henikoff S (2000) Heterochromatin function in complex genomes. Biochim Biophys Acta 1470:O1–O8Google Scholar
  23. Herdman C, Mars JC, Stefanovsky VY, Tremblay MG, Sabourin-Felix M, Lindsay H, Robinson MD, Moss T (2017) A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription. PLoS Genet 13:e1006899.  https://doi.org/10.1371/journal.pgen.1006899 CrossRefGoogle Scholar
  24. Kauzlaric A, Ecco G, Cassano M, Duc J, Imbeault M, Trono D (2017) The mouse genome displays highly dynamic populations of KRAB-zinc finger protein genes and related genetic units. PLoS One 12:e0173746.  https://doi.org/10.1371/journal.pone.0173746 CrossRefGoogle Scholar
  25. Kurihara Y, Suh DS, Suzuki H, Moriwaki K (1994) Chromosomal locations of Ag-NORs and clusters of ribosomal DNA in laboratory strains of mice. Mamm Genome 5:225–228CrossRefGoogle Scholar
  26. Labhart P, Reeder RH (1984) Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis. Cell 37:285–289CrossRefGoogle Scholar
  27. Längst G, Becker PB, Grummt I (1998) TTF-I determines the chromatin architecture of the active rDNA promoter. EMBO J 17:3135–3145CrossRefGoogle Scholar
  28. Li J, Langst G, Grummt I (2006) NoRC-dependent nucleosome positioning silences rRNA genes. EMBO J 25:5735–5741CrossRefGoogle Scholar
  29. Mais C, Wright JE, Prieto JL, Raggett SL, McStay B (2005) UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 19:50–64CrossRefGoogle Scholar
  30. Marques M, Laflamme L, Gervais AL, Gaudreau L (2010) Reconciling the positive and negative roles of histone H2A.Z in gene transcription. Epigenetics 5:267–272CrossRefGoogle Scholar
  31. Mars JC, Sabourin-Felix M, Tremblay MG, Moss T (2018) A deconvolution protocol for chip-seq reveals analogous enhancer structures on the mouse and human ribosomal RNA genes. G3 (Bethesda) 8:303–314.  https://doi.org/10.1534/g3.117.300225 CrossRefGoogle Scholar
  32. Merkl P, Perez-Fernandez J, Pilsl M, Reiter A, Williams L, Gerber J, Bohm M, Deutzmann R, Griesenbeck J, Milkereit P, Tschochner H (2014) Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo. Mol Cell Biol 34:3817–3827.  https://doi.org/10.1128/mcb.00395-14 CrossRefGoogle Scholar
  33. Merz K, Hondele M, Goetze H, Gmelch K, Stoeckl U, Griesenbeck J (2008) Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev 22:1190–1204.  https://doi.org/10.1101/gad.466908 CrossRefGoogle Scholar
  34. Moss T (1983) A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis. Nature 302:223–228CrossRefGoogle Scholar
  35. Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V (2007) A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci 64:29–49CrossRefGoogle Scholar
  36. Nemeth A, Langst G (2008) Chromatin organization of active ribosomal RNA genes. Epigenetics 3:243–245CrossRefGoogle Scholar
  37. Nemeth A, Guibert S, Tiwari VK, Ohlsson R, Langst G (2008) Epigenetic regulation of TTF-I-mediated promoter-terminator interactions of rRNA genes. Embo J 27:1255–1265.  https://doi.org/10.1038/emboj.2008.57 CrossRefGoogle Scholar
  38. Nishibuchi G, Dejardin J (2017) The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosom Res 25:77–87.  https://doi.org/10.1007/s10577-016-9547-3 CrossRefGoogle Scholar
  39. Ong CT, Corces VG (2014) CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15:234–246.  https://doi.org/10.1038/nrg3663 CrossRefGoogle Scholar
  40. Pelletier G, Stefanovsky VY, Faubladier M, Hirschler-Laszkiewicz I, Savard J, Rothblum LI, Côté J, Moss T (2000) Competitive recruitment of CBP and Rb-HDAC regulates UBF acetylation and ribosomal transcription. Mol Cell 6:1059–1066CrossRefGoogle Scholar
  41. Pikaard CS, Pape LK, Henderson SL, Ryan K, Paalman MH, Lopata MA, Reeder RH, Sollner-Webb B (1990) Enhancers for RNA polymerase I in mouse ribosomal DNA. Mol Cell Biol 10:4816–4825CrossRefGoogle Scholar
  42. Ranjan A, Mizuguchi G, FitzGerald PC, Wei D, Wang F, Huang Y, Luk E, Woodcock CL, Wu C (2013) Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement. Cell 154:1232–1245.  https://doi.org/10.1016/j.cell.2013.08.005 CrossRefGoogle Scholar
  43. Reiter A, Hamperl S, Seitz H, Merkl P, Perez-Fernandez J, Williams L, Gerber J, Németh A, Léger I, Gadal O, Milkereit P, Griesenbeck J, Tschochner H (2012) The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast. EMBO J 31:3480–3493.  https://doi.org/10.1038/emboj.2012.185 CrossRefGoogle Scholar
  44. Roussel P, Andre C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246CrossRefGoogle Scholar
  45. Rowe LB, Janaswami PM, Barter ME, Birkenmeier EH (1996) Genetic mapping of 18S ribosomal RNA-related loci to mouse chromosomes 5, 6, 9, 12, 17, 18, 19, and X. Mamm Genome 7:886–889CrossRefGoogle Scholar
  46. Santoro R, Grummt I (2001) Molecular mechanisms mediating methylation-dependent silencing of ribosomal gene transcription. Mol Cell 8:719–725CrossRefGoogle Scholar
  47. Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32:393–396CrossRefGoogle Scholar
  48. Savic N et al (2014) lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs. Cell Stem Cell 15:720–734.  https://doi.org/10.1016/j.stem.2014.10.005 CrossRefGoogle Scholar
  49. Schmickel RD (1973) Quantitation of human ribosomal DNA: hybridization of human DNA with ribosomal RNA for quantitation and fractionation. Pediatr Res 7:5–12CrossRefGoogle Scholar
  50. Schmitz KM, Mayer C, Postepska A, Grummt I (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269.  https://doi.org/10.1101/gad.590910 CrossRefGoogle Scholar
  51. Shen M, Zhou T, Xie W, Ling T, Zhu Q, Zong L, Lyu G, Gao Q, Zhang F, Tao W (2013) The chromatin remodeling factor CSB recruits histone acetyltransferase PCAF to rRNA gene promoters in active state for transcription initiation. PLoS One 8:e62668.  https://doi.org/10.1371/journal.pone.0062668 CrossRefGoogle Scholar
  52. Skibbens RV (2015) Cell biology: cohesin rings leave loose ends. Curr Biol 25:R108–R110.  https://doi.org/10.1016/j.cub.2014.12.015 CrossRefGoogle Scholar
  53. Smirnov E et al (2006) NORs and their transcription competence during the cell cycle. Folia Biol (Praha) 52:59–70Google Scholar
  54. Stancheva I, Lucchini R, Koller T, Sogo JM (1997) Chromatin structure and methylation of rat rRNA genes studied by formaldehyde fixation and psoralen cross-linking. Nucleic Acids Res 25:1727–1735CrossRefGoogle Scholar
  55. Stefanovsky VY, Moss T (2006) Regulation of rRNA synthesis in human and mouse cells is not determined by changes in active gene count. Cell Cycle 5:735–739CrossRefGoogle Scholar
  56. Stefanovsky VY, Bazett-Jones DP, Pelletier G, Moss T (1996) The DNA supercoiling architecture induced by the transcription factor xUBF requires three of its five HMG-boxes. Nucleic Acids Res 24:3208–3215CrossRefGoogle Scholar
  57. Stefanovsky VY, Pelletier G, Bazett-Jones DP, Crane-Robinson C, Moss T (2001) DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules. Nucleic Acids Res 29:3241–3247CrossRefGoogle Scholar
  58. Stefanovsky V, Langlois F, Gagnon-Kugler T, Rothblum LI, Moss T (2006) Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling. Mol Cell 21:629–639.  https://doi.org/10.1016/j.molcel.2006.01.023 CrossRefGoogle Scholar
  59. van de Nobelen S, Rosa-Garrido M, Leers J, Heath H, Soochit W, Joosen L, Jonkers I, Demmers J, van der Reijden M, Torrano V, Grosveld F, Delgado MD, Renkawitz R, Galjart N, Sleutels F (2010) CTCF regulates the local epigenetic state of ribosomal DNA repeats. Epigenetics Chromatin 3:19.  https://doi.org/10.1186/1756-8935-3-19 CrossRefGoogle Scholar
  60. Vintermist A, Bohm S, Sadeghifar F, Louvet E, Mansen A, Percipalle P, Ostlund Farrants AK (2011) The chromatin remodelling complex B-WICH changes the chromatin structure and recruits histone acetyl-transferases to active rRNA genes. PLoS One 6:e19184.  https://doi.org/10.1371/journal.pone.0019184 CrossRefGoogle Scholar
  61. Wittner M, Hamperl S, Stockl U, Seufert W, Tschochner H, Milkereit P, Griesenbeck J (2011) Establishment and maintenance of alternative chromatin states at a multicopy gene locus. Cell 145:543–554.  https://doi.org/10.1016/j.cell.2011.03.051 CrossRefGoogle Scholar
  62. Xie W, Ling T, Zhou Y, Feng W, Zhu Q, Stunnenberg HG, Grummt I, Tao W (2012) The chromatin remodeling complex NuRD establishes the poised state of rRNA genes characterized by bivalent histone modifications and altered nucleosome positions. Proc Natl Acad Sci U S A 109:8161–8166.  https://doi.org/10.1073/pnas.1201262109 CrossRefGoogle Scholar
  63. Yu F, Shen X, Fan L, Yu Z (2015) Analysis of histone modifications at human ribosomal DNA in liver cancer cell. Sci Rep 5:18100.  https://doi.org/10.1038/srep18100 CrossRefGoogle Scholar
  64. Zentner GE, Saiakhova A, Manaenkov P, Adams MD, Scacheri PC (2011) Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res 39:4949–4960.  https://doi.org/10.1093/nar/gkq1326 CrossRefGoogle Scholar
  65. Zentner GE, Balow SA, Scacheri PC (2014) Genomic characterization of the mouse ribosomal DNA locus. G3 (Bethesda) 4:243–254.  https://doi.org/10.1534/g3.113.009290 CrossRefGoogle Scholar
  66. Zhao Z, Dammert MA, Hoppe S, Bierhoff H, Grummt I (2016) Heat shock represses rRNA synthesis by inactivation of TIF-IA and lncRNA-dependent changes in nucleosome positioning. Nucleic Acids Res 44:8144–8152.  https://doi.org/10.1093/nar/gkw496 CrossRefGoogle Scholar
  67. Zillner K, Komatsu J, Filarsky K, Kalepu R, Bensimon A, Nemeth A (2015) Active human nucleolar organizer regions are interspersed with inactive rDNA repeats in normal and tumor cells. Epigenomics 7:363–378.  https://doi.org/10.2217/epi.14.93 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Growth and Development, St Patrick Research Group in Basic OncologyCancer Division of the Quebec University Hospital Research CentreQuébecCanada
  2. 2.Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of MedicineLaval UniversityQuébecCanada

Personalised recommendations