Advertisement

Chromosome Research

, Volume 24, Issue 4, pp 467–480 | Cite as

Chromatin-associated transcripts of tandemly repetitive DNA sequences revealed by RNA-FISH

  • Dal-Hoe Koo
  • Hainan Zhao
  • Jiming Jiang
Original Article

Abstract

Tandemly repetitive DNA sequences, also named satellite repeats, are major DNA components of heterochromatin and are often organized as long arrays in the pericentromeric, centromeric, and subtelomeric regions of eukaryotic chromosomes. An increasing amount of evidence indicates that transcripts derived from some satellite repeats play important roles in various biological functions. We used a RNA-fluorescence in situ hybridization (RNA-FISH) technique to investigate the transcription of the four well-characterized satellite repeats of maize (Zea mays), including the 180-bp knob repeat, the telomeric (TTTAGGG)n repeat, the 156-bp centromeric repeat CentC, and a 350-bp subtelomeric repeat. Although few transcripts derived from these four repeats were found in the expressed sequence tag and RNA-seq databases, RNA-FISH consistently detected the transcripts from three of the four repeats on interphase nuclei, suggesting that the transcripts from the three repeats are largely integrated into chromatin. The transcripts from the knob and telomeric repeats were mapped to the related DNA loci. In contrast, the transcripts from the CentC repeats were mainly localized to the nucleolus, although nucleoplasmic CentC transcripts were also detectable. The nucleolus and nuclear RNAs appeared to be important for the nuclear localization for at least one centromeric protein, Mis12. We demonstrate that RNA-FISH is a powerful tool to assess the level of transcription as well as to physically map the nuclear locations of the transcripts derived from satellite repeats.

Keywords

Satellite repeat Transcription Centromere Telomere Heterochromatin RNA-FISH Zea mays 

Abbreviations

CENP

Centromere protein

EST

Expressed sequence tags

FISH

Fluorescence in situ hybridization

TERRA

Telomeric repeat-containing RNA

Notes

Acknowledgments

This work was supported by grants IOS-0922703 and IOS-1444514 from the National Science Foundation to J.J.

Supplementary material

10577_2016_9537_MOESM1_ESM.pdf (1.9 mb)
ESM 1 (PDF 1979 kb)

References

  1. Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci 95:13073–13078CrossRefPubMedPubMedCentralGoogle Scholar
  2. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801CrossRefPubMedGoogle Scholar
  3. Biscotti MA, Canapa A, Forconi M, Olmo E, Barucca M (2015) Transcription of tandemly repetitive DNA: functional roles. Chromosom Res 23:463–477CrossRefGoogle Scholar
  4. Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Nat Acad Sci USA 103:8709–8714CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burr B, Burr FA, Matz EC, Romeroseverson J (1992) Pinning down loose ends: mapping telomeres and factors affecting their length. Plant Cell 4:953–960CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, et al. (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Nat Acad Sci USA 109:1979–1984CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46CrossRefPubMedGoogle Scholar
  8. Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, et al. (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451:734–737CrossRefPubMedGoogle Scholar
  9. Cheng ZK, Stupar RM, Gu MH, Jiang JM (2001) A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma 110:24–31CrossRefPubMedGoogle Scholar
  10. Chun Y, Park B, Koh W, Lee S, Cheon Y, et al. (2011) New centromeric component CENP-W is an RNA-associated nuclear matrix protein that interacts with nucleophosmin/B23 protein. J Biol Chemi 286:42758–42769CrossRefGoogle Scholar
  11. Cox KH, Deleon DV, Angerer LM, Angerer RC (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol 101:485–502CrossRefPubMedGoogle Scholar
  12. Du YQ, Topp CN, Dawe RK (2010) DNA binding of centromere protein C (CENPC) is stabilized by single stranded RNA. PLoS Genet 6:e1000835CrossRefPubMedPubMedCentralGoogle Scholar
  13. Eymery A, Horard B, El Atifi-Borel M, Fourel G, Berger F, et al. (2009) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 37:6340–6354CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fajkus J, Sykorova E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosom Res 13:469–479CrossRefGoogle Scholar
  15. Ferri F, Bouzinba-Segard H, Velasco G, Hube F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37:5071–5080CrossRefPubMedPubMedCentralGoogle Scholar
  16. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, et al. (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051CrossRefPubMedGoogle Scholar
  17. Gall JG, Atherton DD (1974) Satellite DNA sequences in Drosophila virilis. J Mol Biol 85:633–664CrossRefPubMedGoogle Scholar
  18. Garrido-Ramos MA (2015) Satellite DNA in plants: more than just rubbish. Cytogenetic Genome Res 146:153–170CrossRefGoogle Scholar
  19. Gaubatz JW, Cutler RG (1990) Mouse satellite DNA is transcribed in senescent cardiac muscle. J Biol Chemi 265:17753–17758Google Scholar
  20. Grewal SIS, Elgin SCR (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406CrossRefPubMedPubMedCentralGoogle Scholar
  21. He L, Liu J, Torres GA, Zhang HQ, Jiang JM, et al. (2013) Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosom Res 21:5–13CrossRefGoogle Scholar
  22. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102CrossRefPubMedGoogle Scholar
  23. Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33CrossRefPubMedGoogle Scholar
  24. Highett MI, Beven AF, Shaw PJ (1993) Localization of 5S genes and transcripts in Pisum sativum nuclei. J Cell Sci 105:1151–1158PubMedGoogle Scholar
  25. Jiang JM, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068CrossRefPubMedGoogle Scholar
  26. Jiang JM, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575CrossRefPubMedGoogle Scholar
  27. Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, et al. (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jolly C, Mongelard F, RobertNicoud M, Vourch C (1997) Optimization of nuclear transcript detection by FISH and combination with fluorescence immunocytochemical detection of transcription factors. J Histochemi & Cytochemi 45:1585–1592CrossRefGoogle Scholar
  29. Jolly C, Metz A, Govin J, Vigneron M, Turner BM, et al. (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kloc A, Zaratiegui M, Nora E, Martienssen R (2008) RNA interference guides histone modification during the S phase of chromosomal replication. Curr Biol 18:490–495CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lee HR, Neumann P, Macas J, Jiang JM (2006) Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol 23:2505–2520CrossRefPubMedGoogle Scholar
  32. Li XX, Dawe RK (2009) Fused sister kinetochores initiate the reductional division in meiosis I. Nat Cell Biol 11:1103–1108CrossRefPubMedGoogle Scholar
  33. Li J, Yang F, Zhu J, He SB, Li LJ (2009) Characterization of a tandemly repeated subtelomeric sequence with inverted telomere repeats in maize. Genome 52:286–293CrossRefPubMedGoogle Scholar
  34. Lu J, Gilbert DM (2007) Proliferation-dependent and cell cycle-regulated transcription of mouse pericentric heterochromatin. J Cell Biol 179:411–421CrossRefPubMedPubMedCentralGoogle Scholar
  35. Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28:2503–2510CrossRefPubMedPubMedCentralGoogle Scholar
  36. Maison C, Bailly D, Peters AHFM, Quivy JP, Roche D, et al. (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334CrossRefPubMedGoogle Scholar
  37. Majerova E, Fojtova M, Mozgova I, Bittova M, Fajkus J (2011) Hypomethylating drugs efficiently decrease cytosine methylation in telomeric DNA and activate telomerase without affecting telomere lengths in tobacco cells. Plant Mol Biol 77:371–380CrossRefPubMedGoogle Scholar
  38. May BP, Lippman ZB, Fang YD, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:705–714CrossRefGoogle Scholar
  39. McClintock B (1929) Chromosome morphology in Zea mays. Science 69:629CrossRefPubMedGoogle Scholar
  40. McKnight TD, Riha K, Shippen DE (2002) Telomeres, telomerase, and stability of the plant genome. Plant Mol Biol 48:331–337CrossRefPubMedGoogle Scholar
  41. Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Nat Acad Sci USA 78:4490–4494CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pezer Z, Ugarkovic D (2012) Satellite DNA-associated siRNAs as mediators of heat shock response in insects. RNA Biol 9:587–595CrossRefPubMedGoogle Scholar
  43. Pontes O, Li CF, Nunes PC, Haag J, Ream T, et al. (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92CrossRefPubMedGoogle Scholar
  44. Pontes O, Costa-Nunes P, Vithayathil P, Pikaard CS (2009) RNA polymerase V functions in Arabidopsis interphase heterochromatin organization independently of the 24-nt siRNA-directed DNA methylation pathway. Mol Plant 2:700–710CrossRefPubMedPubMedCentralGoogle Scholar
  45. Prieto P, Moore G, Shaw P (2007) Fluorescence in situ hybridization on vibratome sections of plant tissues. Nat Protoc 2:1831–1838CrossRefPubMedGoogle Scholar
  46. Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, et al. (2010) A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 19:625–638CrossRefPubMedGoogle Scholar
  47. Rivin CJ, Cullis CA, Walbot V (1986) Evaluating quantitative variation in the genome of Zea mays. Genetics 113:1009–1019PubMedPubMedCentralGoogle Scholar
  48. Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207:335–349CrossRefPubMedPubMedCentralGoogle Scholar
  49. Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, et al. (2006) In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods 2:18CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefPubMedGoogle Scholar
  51. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236CrossRefPubMedGoogle Scholar
  52. Sippel AE, Hynes N, Groner B, Schutz G (1977) Frequency distribution of messenger sequences within polysomal messenger RNA and nuclear RNA from rat liver. Eur J Biochem 77:141–151CrossRefPubMedGoogle Scholar
  53. Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, et al. (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–596CrossRefPubMedPubMedCentralGoogle Scholar
  54. Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci U S A 101:15986–15991CrossRefPubMedPubMedCentralGoogle Scholar
  55. Trofimova I, Popova D, Vasilevskaya E, Krasikova A (2014) Non-coding RNA derived from a conservative subtelomeric tandem repeat in chicken and Japanese quail somatic cells. Mol Cytogenet 7:102CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6:1035–1039CrossRefPubMedPubMedCentralGoogle Scholar
  57. Vrbsky J, Akimcheva S, Watson JM, Turner TL, Daxinger L, et al. (2010) siRNA-mediated methylation of I telomeres. PLoS Genet 6:e1000986CrossRefPubMedPubMedCentralGoogle Scholar
  58. Werner MS, Ruthenburg AJ (2015) Nuclear fractionation reveals thousands of chromatin-tethered noncoding RNAs adjacent to active genes. Cell Rep 12:1089–1098CrossRefPubMedGoogle Scholar
  59. Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, et al. (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wu TY, Wang YX, Wu R (1994) Transcribed repetitive DNA-sequences in telomeric regions of rice (Oryza sativa). Plant Mol Biol 26:363–375CrossRefPubMedGoogle Scholar
  61. Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, et al. (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, et al. (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477:179–184CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Plant PathologyKansas State UniversityManhattanUSA

Personalised recommendations