Chromosome Research

, Volume 23, Issue 3, pp 561–570 | Cite as

Impact of repetitive DNA on sex chromosome evolution in plants

Review

Abstract

Structurally and functionally diverged sex chromosomes have evolved in many animals as well as in some plants. Sex chromosomes represent a specific genomic region(s) with locally suppressed recombination. As a consequence, repetitive sequences involving transposable elements, tandem repeats (satellites and microsatellites), and organellar DNA accumulate on the Y (W) chromosomes. In this paper, we review the main types of repetitive elements, their gathering on the Y chromosome, and discuss new findings showing that not only accumulation of various repeats in non-recombining regions but also opposite processes form Y chromosome. The aim of this review is also to discuss the mechanisms of repetitive DNA spread involving (retro) transposition, DNA polymerase slippage or unequal crossing-over, as well as modes of repeat removal by ectopic recombination. The intensity of these processes differs in non-recombining region(s) of sex chromosomes when compared to the recombining parts of genome. We also speculate about the relationship between heterochromatinization and the formation of heteromorphic sex chromosomes.

Keywords

repetitive sequences transposable elements tandem repeats (satellites) microsatellites recombination sex chromosomes 

Abbreviations

TE

Transposable element

LTR

Long terminal repeat

RAYS

Rumex acetosa Y chromosome-specific sequence

STAR-Y

Silene tandem repeat accumulated on the Y chromosome

TRAYC

Tandem Repeat Accumulated on the Y Chromosome

NUPT

Nuclear insertions of plastid DNA

NUMT

Nuclear insertions of mitochondrial DNA

HSY

Hermaphrodite-specific region of the Yh chromosome

MSY

Male-specific region of the Y chromosome

LINE

Long interspersed nuclear element

References

  1. Bachtrog D (2011) Plant sex chromosomes: a non-degenerated Y? Curr Biol 21:R685–R688CrossRefPubMedGoogle Scholar
  2. Bachtrog D, Mank JE, Peichel CL et al (2014) Sex determination: why so many ways of doing it? PLoS Biol 12, e1001899PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bergero R, Qiu S, Charlesworth D (2015) Gene loss from a plant sex chromosome system. Curr Biol 25:1234–1240CrossRefPubMedGoogle Scholar
  4. Blavet N, Blavet H, Muyle A et al (2015) Identifying new sex-linked genes through BAC sequencing in the dioecious plant Silene latifolia. BMC Genomics 16:546PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bridier-Nahmias A, Tchalikian-Cosson A, Baller JA et al (2015) An RNA polymerase III subunit determines sites of retrotransposon integration. Science 348:585–588CrossRefPubMedGoogle Scholar
  6. Bushman FD (1994) Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc Natl Acad Sci U S A 91:9233–9237PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bushman F, Miller MD (1997) Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J Virol 71:458–464PubMedCentralPubMedGoogle Scholar
  8. Bushman F, Lewinski M, Ciuffi A et al (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3:848–858CrossRefPubMedGoogle Scholar
  9. Calarco JP, Borges F, Donoghue MTA et al (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cegan R, Vyskot B, Kejnovsky E et al (2012) Genomic diversity in two related plant species with and without sex chromosomes—Silene latifolia and S. vulgaris. PLoS One 7, e31898PubMedCentralCrossRefPubMedGoogle Scholar
  11. Cermak T, Kubat Z, Hobza R et al (2008) Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosom Res 16:961–976CrossRefGoogle Scholar
  12. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220CrossRefPubMedGoogle Scholar
  13. Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128CrossRefPubMedGoogle Scholar
  14. Cherepanov P, Maertens GN, Hare S (2011) Structural insights into the retroviral DNA integration apparatus. Curr Opin Struct Biol 21:249–256CrossRefPubMedGoogle Scholar
  15. Cherif E, Zehdi S, Castillo K et al (2013) Male-specific DNA markers provide genetic evidence of an XY chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm. New Phytol 197:409–415CrossRefPubMedGoogle Scholar
  16. Cioffi MB, Kejnovsky E, Marquioni V et al (2012) The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system. Mol Cytogenet 5:28CrossRefGoogle Scholar
  17. Cohen S, Agmon N, Sobol O, Segal D (2010) Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells. Mob DNA 1:11PubMedCentralCrossRefPubMedGoogle Scholar
  18. Creasey KM, Zhai J, Borges F et al (2014) miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508:411–415PubMedCentralCrossRefPubMedGoogle Scholar
  19. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445CrossRefPubMedGoogle Scholar
  20. Gao X, Hou Y, Ebina H, Levin HL, Voytas DF (2008) Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 18:359–363PubMedCentralCrossRefPubMedGoogle Scholar
  21. Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451PubMedCentralCrossRefPubMedGoogle Scholar
  22. Gschwend AR, Yu Q, Tong EJ et al (2012) Rapid divergence and expansion of the X chromosome in papaya. Proc Natl Acad Sci U S A 109:13716–13721PubMedCentralCrossRefPubMedGoogle Scholar
  23. Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. J Genet 12:101–109CrossRefGoogle Scholar
  24. Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, Vyskot B (2006) An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma 115:376–382CrossRefPubMedGoogle Scholar
  25. Hobza R, Kejnovsky E, Vyskot B, Widmer A (2007) The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Mol Genet Genomics 278:633–638CrossRefPubMedGoogle Scholar
  26. Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428PubMedCentralCrossRefPubMedGoogle Scholar
  27. Hollister JD, Smith LM, Guo Y, Ott F, Weigel D, Gaut BS (2011) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci U S A 108:2322–2327PubMedCentralCrossRefPubMedGoogle Scholar
  28. Hsieh TF, Ibarra CA, Silva P et al (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454PubMedCentralCrossRefPubMedGoogle Scholar
  29. Ibarra CA, Feng X, Schoft VK et al (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kejnovsky E, Kubat Z, Hobza R et al (2006a) Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica 128:167–175CrossRefPubMedGoogle Scholar
  31. Kejnovsky E, Kubat Z, Macas J, Hobza R, Mracek J, Vyskot B (2006b) Retand: a novel family of gypsy-like retrotransposon harboring an amplified tandem repeat. Mol Genet Genomics 276:254–263CrossRefPubMedGoogle Scholar
  32. Kejnovsky E, Hobza R, Kubat Z, Widmer A, Marais GAB, Vyskot B (2007) High intrachromosomal similarity of retrotransposon long terminal repeats: evidence for homogenization by gene conversion on plant sex chromosomes? Gene 390:92–97CrossRefPubMedGoogle Scholar
  33. Kejnovsky E, Hobza R, Kubat Z, Cermak T, Vyskot B (2009) The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102:533–541CrossRefPubMedGoogle Scholar
  34. Kejnovsky E, Michalovova M, Steflova P et al (2013) Expansion of microsatellites on evolutionary young Y chromosome. PLoS One 8, e45519PubMedCentralCrossRefPubMedGoogle Scholar
  35. Kelkar YD, Eckert KA, Chiaromonte F, Makova KD (2011) A matter of life or death: how microsatellites emerge in and vanish from the human genome. Genome Res 21:2038–2048PubMedCentralCrossRefPubMedGoogle Scholar
  36. Kijima TE, Innan H (2010) On the estimation of the insertion time of LTR retrotransposable elements. Mol Biol Evol 27:896–904CrossRefPubMedGoogle Scholar
  37. Kirkpatrick M (2010) How and why chromosome inversions evolve. PLoS Biol 8, e1000501PubMedCentralCrossRefPubMedGoogle Scholar
  38. Kralova T, Cegan R, Kubat Z et al (2013) Identification of a novel retrotransposon with sex chromosome-specific distribution in Silene latifolia. Cytogenet Genome Res 143:87–95CrossRefGoogle Scholar
  39. Kubat Z, Zluvova J, Vogel I et al (2014) Possible mechanisms responsible for absence of retrotransposon family on a plant Y chromosome. New Phytol 202:662–678CrossRefPubMedGoogle Scholar
  40. Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B (1988) On the role of unequal exchange in the containment of transposable element copy number. Genet Res 52:223–235CrossRefPubMedGoogle Scholar
  41. Lewinski MK, Yamashita M, Emerman M et al (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2, e60PubMedCentralCrossRefPubMedGoogle Scholar
  42. Liu Z, Moore PH, Ma H et al (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352CrossRefPubMedGoogle Scholar
  43. Mariotti B, Manzano S, Kejnovsky E, Vyskot B, Jamilena M (2009) Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol Genet Genomics 281:249–259CrossRefPubMedGoogle Scholar
  44. Matsuo M, Ito Y, Yamauchi R, Obokata J (2005) The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell 17:665–675PubMedCentralCrossRefPubMedGoogle Scholar
  45. Michalovova M, Vyskot B, Kejnovsky E (2013) Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity 111:314–320PubMedCentralCrossRefPubMedGoogle Scholar
  46. Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Ann Rev Plant Biol 62:485–514Google Scholar
  47. Miyao A, Tanaka K, Murata K et al (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780PubMedCentralCrossRefPubMedGoogle Scholar
  48. Na JK, Wang J, Ming R (2014) Accumulation of interspersed and sex-specific repeats in the non-recombining region of papaya sex chromosomes. BMC Genomics 15:335PubMedCentralCrossRefPubMedGoogle Scholar
  49. Naito K, Zhang F, Tsukiyama T et al (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:1130–1134CrossRefPubMedGoogle Scholar
  50. Navajas-Pérez R, Herrán R, Jamilena M et al (2005) Reduced rate of sequence evolution of Y-linked satellite DNA in Rumex (Polygonaceae). J Mol Evol 60:391–399CrossRefPubMedGoogle Scholar
  51. Navajas-Pérez R, Schwarzacher T, Rejón MR, Garrido-Ramos MA (2009) Molecular cytogenetic characterization of Rumex papillaris, a dioecious plant with an XX/XY1Y2 sex chromosome systém. Genetica 135:87–93CrossRefPubMedGoogle Scholar
  52. Neumann P, Navrátilová A, Koblížková A et al (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2:4PubMedCentralCrossRefPubMedGoogle Scholar
  53. Plohl M, Luchetti A, Mestrovic N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72–82CrossRefPubMedGoogle Scholar
  54. Reinders J, Mirouze M, Nicolet J, Paszkowski J (2013) Parent-of-origin control of transgenerational retrotransposon proliferation in Arabidopsis. EMBO Rep 14:823–828PubMedCentralCrossRefPubMedGoogle Scholar
  55. Pokorna M, Kratochvil L, Kejnovsky E (2011) Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Laceridae: Eremias velox). BMC Genet 12:90PubMedCentralCrossRefPubMedGoogle Scholar
  56. Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S (2000) Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44:723–732CrossRefPubMedGoogle Scholar
  57. Shibata F, Hizume M, Kuroki Y (1999) Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequences in the dioecious plant Rumex acetosa. Chromosoma 108:266–270CrossRefPubMedGoogle Scholar
  58. Shibata F, Hizume M, Kuroki Y (2000) Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant, Rumex acetosa. Chromosom Res 8:229–236CrossRefGoogle Scholar
  59. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285CrossRefPubMedGoogle Scholar
  60. Slotkin RK, Vaughn M, Borges F et al (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472PubMedCentralCrossRefPubMedGoogle Scholar
  61. Steflova P, Tokan V, Vogel I et al (2013) Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa. Genome Biol Evol 5:769–782PubMedCentralCrossRefPubMedGoogle Scholar
  62. Steflova P, Hobza R, Vyskot B, Kejnovsky E (2014) Strong accumulation of chloroplast DNA in the Y chromosomes of Rumex acetosa and Silene latifolia. Cytogenet Genome Res 142:59–65CrossRefPubMedGoogle Scholar
  63. Tenaillon MI, Hollister JD, Gaut BS (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15:471–478CrossRefPubMedGoogle Scholar
  64. VanBuren R, Ming R (2013) Organelle DNA accumulation in the recently evolved papaya sex chromosomes. Mol Genet Genomics 288:277–284CrossRefPubMedGoogle Scholar
  65. Vicoso B, Emerson JJ, Zektser Y, Mahajan S, Bachtrog D (2013) Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol 11(8), e1001643PubMedCentralCrossRefPubMedGoogle Scholar
  66. Vyskot B, Hobza R (2015) The genomics of plant sex chromosomes. Plant Sci 236:126–135CrossRefPubMedGoogle Scholar
  67. Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982CrossRefPubMedGoogle Scholar
  68. Yamato KT, Ishizaki K, Fujisawa M et al (2007) Gene organization of the liverworth Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc Natl Acad Sci U S A 104:6472–6477PubMedCentralCrossRefPubMedGoogle Scholar
  69. Zhang W, Wang X, Yu Q, Ming R, Jiang J (2008) DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Plant Developmental Genetics, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Institute of Experimental Botany AS CRCentre of the Region Hana for Biotechnological and Agricultural ResearchOlomouc-HoliceCzech Republic

Personalised recommendations