Chromosome Research

, Volume 23, Issue 3, pp 441–461 | Cite as

Evolutionary dynamics of two satellite DNA families in rock lizards of the genus Iberolacerta (Squamata, Lacertidae): different histories but common traits

  • Verónica Rojo
  • Andrés Martínez-Lage
  • Massimo Giovannotti
  • Ana M. González-Tizón
  • Paola Nisi Cerioni
  • Vincenzo Caputo Barucchi
  • Pedro Galán
  • Ettore Olmo
  • Horacio NaveiraEmail author
Original Article


Satellite DNAs compose a large portion of all higher eukaryotic genomes. The turnover of these highly repetitive sequences is an important element in genome organization and evolution. However, information about the structure and dynamics of reptilian satellite DNA is still scarce. Two satellite DNA families, HindIII and TaqI, have been previously characterized in four species of the genus Iberolacerta. These families showed different chromosomal locations, abundances, and evolutionary rates. Here, we extend the study of both satellite DNAs (satDNAs) to the remaining Iberolacerta species, with the aim to investigate the patterns of variability and factors influencing the evolution of these repetitive sequences. Our results revealed disparate patterns but also common traits in the evolutionary histories of these satellite families: (i) each satellite DNA is made up of a library of monomer variants or subfamilies shared by related species; (ii) species-specific profiles of satellite repeats are shaped by expansions and/or contractions of different variants from the library; (iii) different turnover rates, even among closely related species, result in great differences in overall sequence homogeneity and in concerted or non-concerted evolution patterns, which may not reflect the phylogenetic relationships among taxa. Contrasting turnover rates are possibly related to genomic constraints such as karyotype architecture and the interspersed organization of diverging repeat variants in satellite arrays. Moreover, rapid changes in copy number, especially in the centromeric HindIII satDNA, may have been associated with chromosomal rearrangements and even contributed to speciation within Iberolacerta.


Concerted evolution FISH Iberolacerta Library model Satellite DNA Squamate reptiles 



Cyanine 3


Deoxyribonucleotide triphosphate


Factorial correspondence analysis


Fluorescence in situ hybridization


Fluorescein iso-thyocianate


Million years ago


Nucleotide diversity


Satellite DNA



This work was supported by grants REN2003-02931/GLO (Ministerio de Ciencia y Tecnología, Spain), PGIDIT03RFO10301PR and PGIDIT06RFO10301PR (Xunta de Galicia, Spain) awarded to Horacio Naveira, GRC2014/050 awarded to Ana González, and by grant PRIN2009/20093HYH97 (Ministry of Education, University and Research, Italy) awarded to Vincenzo Caputo Barucchi. Verónica Rojo has been supported by a “FPU” fellowship from Ministerio de Educación, Cultura y Deporte (Spain).

Ethical standards

Permissions for field work and experimental procedures were issued by the competent authorities: Xunta de Galicia (for I. monticola and I. galani), Junta de Castilla y León (for I. cyreni and I. martinezricai), Gobierno de Aragón (for I. bonnali), and Italian Environment Ministry (for I. horvathi). All institutional and national guidelines for the care and use of laboratory animals were followed.

Supplementary material

10577_2015_9489_Fig6_ESM.gif (744 kb)
Supplementary Fig. 1

Sequence alignment of consensus sequences of the different HindIII (a) and TaqI (b) sequence groups. The first line shows the general consensus for all the sequences of each satDNA. Diagnostic positions for each group are indicated by colored shading. (GIF 743 kb)

10577_2015_9489_Fig7_ESM.gif (1 mb)
Supplementary Fig. 1

Sequence alignment of consensus sequences of the different HindIII (a) and TaqI (b) sequence groups. The first line shows the general consensus for all the sequences of each satDNA. Diagnostic positions for each group are indicated by colored shading. (GIF 743 kb)

10577_2015_9489_MOESM1_ESM.tif (29.9 mb)
High Resolution Image (TIFF 30589 kb)
10577_2015_9489_MOESM2_ESM.tif (39.4 mb)
High Resolution Image (TIFF 40349 kb)
10577_2015_9489_MOESM3_ESM.doc (16 kb)
Supplementary Table 1 (DOC 16 kb)
10577_2015_9489_MOESM4_ESM.doc (74 kb)
Supplementary Table 2 (DOC 74 kb)
10577_2015_9489_MOESM5_ESM.doc (46 kb)
Supplementary Table 3 (DOC 46 kb)


  1. Arnold EN, Arribas O, Carranza S (2007) Systematics of the palaearctic and oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa 1430:1–86Google Scholar
  2. Arribas O, Odierna G (2004) Karyological and osteological data supporting the specific status of Iberolacerta (cyreni) martinezricai (Arribas, 1996). Amphibia-Reptilia 25:359–367CrossRefGoogle Scholar
  3. Arribas O, Carranza S, Odierna G (2006) Description of a new endemic species of mountain lizard from Northwestern Spain: Iberolacerta galani sp. nov. (Squamata: Lacertidae). Zootaxa 1240:1–55Google Scholar
  4. Arribas O, Galán P, Remón N, Naveira H (2014) A new mountain lizard from Montes de León (NW Iberian Peninsula): Iberolacerta monticola astur ssp. nov. (Squamata: Lacertidae). Zootaxa 3796:201–236CrossRefPubMedGoogle Scholar
  5. Bachmann L, Sperlich D (1993) Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis, and D. obscura. Mol Biol Evol 10:647–659PubMedGoogle Scholar
  6. Bachmann L, Raab M, Sperlich D (1989) Satellite DNA and speciation: a species specific satellite DNA of Drosophila guanchel. J Zool Syst Evol Res 27:84–93CrossRefGoogle Scholar
  7. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Retrieved from: 18/3/2015
  8. Bulazel KV, Ferreri GC, Eldridge MDB, O’Neill RJ (2007) Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol 8:R170PubMedCentralCrossRefPubMedGoogle Scholar
  9. Capriglione T (2000) Repetitive DNA as a tool to study the phylogeny of cold-blooded vertebrates. In: Olmo E, Redi CA (eds) Chromosomes today. Birkhäuser Verlag, Basel, pp 183–194CrossRefGoogle Scholar
  10. Capriglione T, Olmo E, Odierna G, Smith DI, Miller OJ (1989) Genome composition and tandemly repetitive sequence at some centromeres in the lizard Podarcis s. sicula Raf. Genetica 79:85–91CrossRefGoogle Scholar
  11. Capriglione T, Cardone A, Odierna G, Olmo E (1991) Evolution of a centromeric satellite DNA and phylogeny of lacertid lizards. Comp Biochem Physiol B 100:641–645PubMedGoogle Scholar
  12. Capriglione T, Cardone A, Odierna G, Olmo E (1994) Further data on the occurrence and evolution of satellite DNA families in the lacertid genome. Chromosom Res 2:327–330CrossRefGoogle Scholar
  13. Capriglione T, de Santo MG, Odierna G, Olmo E (1998) An alphoid-like satellite DNA sequence is present in the genome of a lacertid lizard. J Mol Evol 46:240–244CrossRefPubMedGoogle Scholar
  14. Capula M, Lapini L, Capanna E (1989) The karyotype of Lacerta horvathi (Reptilia, Sauria, Lacertidae). Genetica 79:11–16CrossRefGoogle Scholar
  15. Cesari M, Luchetti A, Passamonti M, Scali V, Mantovani B (2003) Polymerase chain reaction amplification of the Bag320 satellite family reveals the ancestral library and past gene conversion events in Bacillus rossius (Insecta Phasmatodea). Gene 312:289–295CrossRefPubMedGoogle Scholar
  16. Chaiprasertsri N, Uno Y, Peyachokinagui S et al (2013) Highly species-specific centromeric repetitive DNA sequences in lizards: molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota). J Hered 104:798–806CrossRefPubMedGoogle Scholar
  17. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220CrossRefPubMedGoogle Scholar
  18. Ciobanu D, Grechko VV, Darevsky IS (2003) Molecular evolution of satellite DNA CLsat in lizards from the Genus Darevskia (Sauria: Lacertidae): correlation with species diversity. Russ J Genet 39:1527–1541CrossRefGoogle Scholar
  19. Ciobanu D, Grechko VV, Darevsky IS, Kramerov DA (2004) New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): evolutionary pathways and phylogenetic impact. J Exp Zool B Mol Dev Evol 302:505–516CrossRefPubMedGoogle Scholar
  20. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefPubMedGoogle Scholar
  21. de la Herrán R, Fontana F, Lanfredi M et al (2001) Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Mol Biol Evol 18:432–436CrossRefGoogle Scholar
  22. Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117CrossRefPubMedGoogle Scholar
  23. Dover GA (2002) Molecular drive. Trends Genet 18:587–589CrossRefPubMedGoogle Scholar
  24. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralCrossRefPubMedGoogle Scholar
  25. Enukashvily NI, Ponomartsev NV (2013) Mammalian satellite DNA: a speaking dumb. Adv Protein Chem Struct Biol 90:31–65CrossRefPubMedGoogle Scholar
  26. Feliciello I, Akrap I, Brajković J, Zlatar I, Ugarković Đ (2015) Satellite DNA as a driver of population divergence in the red flour beetle Tribolium castaneum. Genome Biol Evol 7:228–239PubMedCentralCrossRefGoogle Scholar
  27. Ferree PM, Barbash DA (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7, e1000234PubMedCentralCrossRefPubMedGoogle Scholar
  28. Fry K, Salser W (1977) Nucleotide sequences of HS-Α satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12:1069–1084CrossRefPubMedGoogle Scholar
  29. Giovannotti M, Nisi Cerioni P, Caputo V, Olmo E (2009) Characterisation of a GC-rich telomeric satellite DNA in Eumeces schneideri Daudin (Reptilia, Scincidae). Cytogenet Genome Res 125:272–278CrossRefPubMedGoogle Scholar
  30. Giovannotti M, Nisi Cerioni P, Splendiani A, Ruggeri P, Olmo E, Caputo Barucchi V (2013) Slow evolving satellite DNAs: the case of a centromeric satellite in Chalcides ocellatus (Forskål, 1775) (Reptilia, Scincidae). Amphibia-Reptilia 34:401–411CrossRefGoogle Scholar
  31. Giovannotti M, Rojo V, Nisi Cerioni P et al (2014) Isolation and characterization of two satellite DNAs in some Iberian rock lizards (Squamata, Lacertidae). J Exp Zool B Mol Dev Evol 322:13–26CrossRefPubMedGoogle Scholar
  32. Grechko VV, Ciobanu DG, Darevsky IS, Kramerov DA (2005) Satellite DNA of lizards of the genus Lacerta s. str. (the group L. agilis), the family Lacertidae. Dokl Biochem Biophys 400:44–47CrossRefPubMedGoogle Scholar
  33. Grechko VV, Ciobanu DG, Darevsky IS, Kosushkin SA, Kramerov DA (2006) Molecular evolution of satellite DNA repeats and speciation of lizards of the genus Darevskia (Sauria: Lacertidae). Genome 49:1297–1307CrossRefPubMedGoogle Scholar
  34. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102CrossRefPubMedGoogle Scholar
  35. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649PubMedCentralCrossRefPubMedGoogle Scholar
  36. Kuhn GCS, Sene FM, Moreira-Filho O, Schwarzacher T, Heslop-Harrison JS (2008) Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster. Chromosom Res 16:307–324CrossRefGoogle Scholar
  37. Kuhn GCS, Schwarzacher T, Heslop-Harrison JS (2010) The non-regular orbit: three satellite DNAs in Drosophila martensis (buzzatii complex, repleta group) followed three different evolutionary pathways. Mol Genet Genomics 284:251–262CrossRefPubMedGoogle Scholar
  38. Kuhn GCS, Küttler H, Moreira-Filho O, Heslop-Harrison JS (2011) The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes. Mol Biol Evol msr173Google Scholar
  39. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  40. Luchetti A, Cesari M, Carrara G et al (2003) Unisexuality and molecular drive: Bag320 sequence diversity in Bacillus taxa (Insecta Phasmatodea). J Mol Evol 56:587–589CrossRefPubMedGoogle Scholar
  41. Macas J, Navrátilová A, Koblížková A (2006) Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species. Chromosoma 115:437–447CrossRefPubMedGoogle Scholar
  42. Martinsen L, Venanzetti F, Johnsen A, Sbordoni V, Bachman L (2009) Molecular evolution of the pDo500 satellite DNA family in Dolichopoda cave crickets (Rhaphidophoridae). BMC Evol Biol 9:1–14CrossRefGoogle Scholar
  43. Meštrović N, Plohl M, Mravinac B, Ugarković D (1998) Evolution of satellite DNAs from the genus palorus—experimental evidence for the ‘library’ hypothesis. Mol Biol Evol 15:1062–1068CrossRefPubMedGoogle Scholar
  44. Meštrović N, Castagnone-Sereno P, Plohl M (2006) Interplay of selective pressure and stochastic events directs evolution of the MEL172 satellite DNA library in root-knot nematodes. Mol Biol Evol 23:2316–2325CrossRefPubMedGoogle Scholar
  45. Navajas-Pérez R, Quesada del Bosque ME, Garrido-Ramos MA (2009) Effect of location, organization, and repeat-copy number in satellite-DNA evolution. Mol Genet Genomics 282:395–406CrossRefPubMedGoogle Scholar
  46. Nijman IJ, Lenstra JA (2001) Mutation and recombination in cattle satellite DNA: a feedback model for the evolution of satellite repeats. J Mol Evol 52:361–371PubMedGoogle Scholar
  47. Odierna G, Aprea G, Arribas O, Capriglione T, Caputo V, Olmo E (1996) The karyology of the Iberian rock lizards. Herpetologica 52:542–550Google Scholar
  48. Palomeque T, Lorite P (2008) Satellite DNA in insects: a review. Heredity 100:564–573CrossRefPubMedGoogle Scholar
  49. Pezer Ž, Brajković J, Feliciello I, Ugarković D (2012) Satellite DNA-mediated effects on genome regulation. In: Garrido-Ramos MA (ed) Repetitive DNA. Genome dynamics vol 7. Karger, Basel, pp 153–169Google Scholar
  50. Plohl M, Luchetti A, Meštrović N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero) chromatin. Gene 409:72–82CrossRefPubMedGoogle Scholar
  51. Plohl M, Petrovic V, Luchetti A et al (2010) Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity 104:543–551CrossRefPubMedGoogle Scholar
  52. Plohl M, Meštrović N, Mravinac B (2012) Satellite DNA evolution. In: Garrido-Ramos MA (ed) Repetitive DNA, vol 7, Genome dynamics vol. Karger, Basel, pp 126–152CrossRefGoogle Scholar
  53. Robles F, de la Herrán R, Ludwig A, Rejón CR, Rejón MR, Garrido-Ramos MA (2004) Evolution of ancient satellite DNAs in sturgeon genomes. Gene 338:133–142CrossRefPubMedGoogle Scholar
  54. Rojo V, Giovannotti M, Naveira H et al (2014) Karyological characterization of the endemic Iberian rock lizard, Iberolacerta monticola (Squamata, Lacertidae): insights into sex chromosome evolution. Cytogenet Genome Res 142:28–39CrossRefPubMedGoogle Scholar
  55. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  56. Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific Publishers Ltd., OxfordGoogle Scholar
  57. Sindaco R, Jeremčenko VK (2008) The reptiles of the western paleartic, volume 1: annotated checklist and distributional atlas of the turtles, crocodiles, amphisbaenians and lizards of Europe, North Africa, Middle East and Central Asia. Latina: Edizioni BelvedereGoogle Scholar
  58. Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535CrossRefPubMedGoogle Scholar
  59. Stephan W (1986) Recombination and the evolution of satellite DNA. Genet Res 47:167–174CrossRefPubMedGoogle Scholar
  60. Strachan T, Webb D, Dover G (1985) Transition stages of molecular drive in multiple-copy DNA families in Drosophila. EMBO J 4:1701–1708PubMedCentralPubMedGoogle Scholar
  61. Talbert PB, Henikoff S (2010) Centromeres convert but don’t cross. PLoS Biol 8, e1000326PubMedCentralCrossRefPubMedGoogle Scholar
  62. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035PubMedCentralCrossRefPubMedGoogle Scholar
  63. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralCrossRefPubMedGoogle Scholar
  64. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633PubMedCentralPubMedGoogle Scholar
  65. Ugarković D (2009) Centromere-competent DNA: structure and evolution. Prog Mol Subcell Biol 48:53–76CrossRefPubMedGoogle Scholar
  66. Ugarković D, Plohl M (2002) Variation in satellite DNA profiles—causes and effects. EMBO J 21:5955–5959CrossRefPubMedGoogle Scholar
  67. Waters PD, Marshall Graves JA, Thompson K, Sankovic N, Ezaz T (2008) Identification of cryptic sex chromosomes and isolation of X- and Y-borne genes. Methods Mol Biol 422:239–251CrossRefPubMedGoogle Scholar
  68. Wei KH-C, Grenier JK, Barbash DA, Clark AG (2014) Correlated variation and population differentiation in satellite DNA abundance among lines of Drosophila melanogaster. PNAS 111:18793–18798PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Verónica Rojo
    • 1
  • Andrés Martínez-Lage
    • 1
  • Massimo Giovannotti
    • 2
  • Ana M. González-Tizón
    • 1
  • Paola Nisi Cerioni
    • 2
  • Vincenzo Caputo Barucchi
    • 2
    • 3
  • Pedro Galán
    • 4
  • Ettore Olmo
    • 2
  • Horacio Naveira
    • 1
    Email author
  1. 1.Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Celular e MolecularUniversidade da CoruñaA CoruñaSpain
  2. 2.Dipartimento di Scienze della Vita e dell’AmbienteUniversità Politecnica delle MarcheAnconaItaly
  3. 3.Consiglio Nazionale delle RicercheIstituto di Scienze Marine Sezione Pesca MarittimaAnconaItaly
  4. 4.Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e EcoloxíaUniversidade da CoruñaA CoruñaSpain

Personalised recommendations