Chromosome Research

, Volume 23, Issue 4, pp 733–752 | Cite as

Two novel DXZ4-associated long noncoding RNAs show developmental changes in expression coincident with heterochromatin formation at the human (Homo sapiens) macrosatellite repeat

  • Debbie M. Figueroa
  • Emily M. Darrow
  • Brian P. Chadwick


On the male X and female active X chromosome (Xa), the macrosatellite repeat (MSR) DXZ4 is packaged into constitutive heterochromatin characterized by CpG methylation and histone H3 tri-methylated at lysine-9 (H3K9me3). In contrast, DXZ4 on the female inactive X chromosome (Xi), is packaged into euchromatin, is bound by the architectural protein CCCTC-binding factor, and mediates Xi-specific long-range cis contact with similarly packaged tandem repeats on the Xi. In cancer, male DXZ4 can inappropriately revert to a Xi-like state and other MSRs have been reported to adopt alternate chromatin configurations in response to disease. Given this plasticity, we sought to identify factors that might control heterochromatin at DXZ4. In human embryonic stem cells, we found low levels of 5-hydroxymethylcytosine at DXZ4 and that this mark is lost upon differentiation as H3K9me3 is acquired. We identified two previously undescribed DXZ4 associated noncoding transcripts (DANT1 and DANT2) that are transcribed toward DXZ4 from promoters flanking the array. Each generates transcript isoforms that traverse the MSR. However, upon differentiation, enhancer of Zeste-2 silences DANT1, and DANT2 transcription terminates prior to entering DXZ4. These data support a model wherein DANT1 and/or DANT2 may function to regulate constitutive heterochromatin formation at this MSR.


Macrosatellite DXZ4 X chromosome inactivation Human embryonic stem cells Euchromatin and heterochromatin Long noncoding RNA 







American Type Culture Collection


Array-traversing transcript


Bisulfite sequencing


CpG island


Chromatin immunoprecipitation


CCCTC-binding factor


DXZ4-associated noncoding transcript, proximal


DXZ4-associated noncoding transcript, distal


Double-stranded RNA


Embryoid body out-growths


Enhancer of Zeste 2


Expressed sequence tags


Facioscapulohumeral muscular dystrophy


Histone H3 di-methylated at lysine 4


Histone H3 tri-methyated at lysine 9


Human embryonic stem cells


Human Gene Nomenclature Committee




Long interspersed elements


Long noncoding RNA


Long terminal repeats


Messenger RNA


Macrosatellite repeat


Open reading frame


Oxidative bisulfite sequencing


Phosphate-buffered saline


Polycomb repressive complex 2


Quantitative chromatin immunoprecipitation


Quantitative PCR


Rapid amplification of cDNA ends


Reverse transcription PCR


Simple repeat


Saline-sodium citrate


Transcription start sites


Active X chromosome


X chromosome inactivation


Inactive X chromosome


X inactive specific transcript



This work was supported by the National Institutes of Health [GM073120 to B.P.C.] and by a subaward from P01GM085354 to Dr. Stephen Dalton, University of Georgia.

Ethical standards

Experiments performed in this manuscript comply with the current laws of the USA.

Conflict of interest

Debbie M. Figueroa declares that she has no conflict of interest.

Emily M. Darrow declares that she has no conflict of interest.

Brian P. Chadwick declares that he has no conflict of interest.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

10577_2015_9479_MOESM1_ESM.pdf (7.5 mb)
ESM 1 (PDF 7684 kb)


  1. Awaya T, Kato T, Mizuno Y et al (2012) Selective development of myogenic mesenchymal cells from human embryonic and induced pluripotent stem cells. PLoS One 7(12):e51638. doi: 10.1371/journal.pone.0051638 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Booth MJ, Branco MR, Ficz G et al (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336(6083):934–937. doi: 10.1126/science.1220671 CrossRefPubMedGoogle Scholar
  3. Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13(1):7–13. doi: 10.1038/nrg3080 Google Scholar
  4. Brockdorff N, Ashworth A, Kay GF et al (1992) The product of the mouse Xist gene is a 15kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526CrossRefPubMedGoogle Scholar
  5. Brown CJ, Hendrich BD, Rupert JL et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542CrossRefPubMedGoogle Scholar
  6. Cabianca DS, Casa V, Bodega B et al (2012) A long ncRNA links copy number variation to a Polycomb/Trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149(4):819–831. doi: 10.1016/j.cell.2012.03.035 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Cadet J, Wagner JR (2014) TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. Mutat Res Genet Toxicol Environ Mutagen 764–765:18–35. doi: 10.1016/j.mrgentox.2013.09.001 CrossRefPubMedGoogle Scholar
  8. Cao R, Zhang Y (2004) The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14(2):155–164. doi: 10.1016/j.gde.2004.02.001 CrossRefPubMedGoogle Scholar
  9. Cao R, Wang L, Wang H et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039–1043CrossRefPubMedGoogle Scholar
  10. Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14(2):100–112. doi: 10.1038/nrg3355 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Chadwick BP (2008) DXZ4 chromatin adopts an opposing conformation to that of the surrounding chromosome and acquires a novel inactive X-specific role involving CTCF and antisense transcripts. Genome Res 18(8):1259–1269PubMedCentralCrossRefPubMedGoogle Scholar
  12. Chadwick BP, Willard HF (2002) Cell cycle-dependent localization of macroH2A in chromatin of the inactive X chromosome. J Cell Biol 157(7):1113–1123PubMedCentralCrossRefPubMedGoogle Scholar
  13. Chadwick BP, Willard HF (2003a) Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X. Semin Cell Dev Biol 14:359–367CrossRefPubMedGoogle Scholar
  14. Chadwick BP, Willard HF (2003b) Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. Hum Mol Genet 12(17):2167–2178CrossRefPubMedGoogle Scholar
  15. Cheng YH, Wong EW, Cheng CY (2011) Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis. Spermatogenesis 1(3):209–220. doi: 10.4161/spmg.1.3.179902156-5554-1-3-5 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Chetty S, Pagliuca FW, Honore C, Kweudjeu A, Rezania A, Melton DA (2013) A simple tool to improve pluripotent stem cell differentiation. Nat Methods 10(6):553–556. doi: 10.1038/nmeth.2442 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Chopra P, Papale LA, White AT et al (2014) Array-based assay detects genome-wide 5-mC and 5-hmC in the brains of humans, non-human primates, and mice. BMC Genomics 15:131. doi: 10.1186/1471-2164-15-131 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Consortium EP, Bernstein BE, Birney E (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. doi: 10.1038/nature11247 CrossRefGoogle Scholar
  19. Deidda G, Cacurri S, Grisanti P, Vigneti E, Piazzo N, Felicetti L (1995) Physical mapping evidence for a duplicated region on chromosome 10qter showing high homology with the facioscapulohumeral muscular dystrophy locus on chromosome 4qter. Eur J Hum Genet 3(3):155–167PubMedGoogle Scholar
  20. Ficz G, Branco MR, Seisenberger S et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347):398–402. doi: 10.1038/nature10008 CrossRefPubMedGoogle Scholar
  21. Gendrel AV, Heard E (2014) Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu Rev Cell Dev Biol. doi: 10.1146/annurev-cellbio-101512-122415 PubMedGoogle Scholar
  22. Geng LN, Yao Z, Snider L et al (2012) DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell 22:1–14. doi: 10.1016/j.devcel.2011.11.013 CrossRefGoogle Scholar
  23. Giacalone J, Friedes J, Francke U (1992) A novel GC-rich human macrosatellite VNTR in Xq24 is differentially methylated on active and inactive X chromosomes. Nat Genet 1(2):137–143CrossRefPubMedGoogle Scholar
  24. Globisch D, Munzel M, Muller M et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5(12):e15367. doi: 10.1371/journal.pone.0015367 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Hacisuleyman E, Goff LA, Trapnell C et al (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struc Mol Biol 21(2):198–206CrossRefGoogle Scholar
  26. Hasson D, Alonso A, Cheung F et al (2011) Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres. Chromosoma 120(6):621–632. doi: 10.1007/s00412-011-0337-6 CrossRefPubMedGoogle Scholar
  27. Horakova AH, Calabrese JM, McLaughlin CR, Tremblay DC, Magnuson T, Chadwick BP (2012a) The mouse DXZ4 homolog retains Ctcf binding and proximity to Pls3 despite substantial organizational differences compared to the primate macrosatellite. Genome Biol 13(8):R70. doi: 10.1186/gb-2012-13-8-r70 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Horakova AH, Moseley SC, McLaughlin CR, Tremblay DC, Chadwick BP (2012b) The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome. Hum Mol Genet. doi: 10.1093/hmg/dds270 PubMedCentralPubMedGoogle Scholar
  29. Jeon Y, Sarma K, Lee JT (2012) New and xisting regulatory mechanisms of X chromosome inactivation. Curr Opin Genet Dev 22(2):62–71. doi: 10.1016/j.gde.2012.02.007 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Lemmers RJ, de Kievit P, Sandkuijl L et al (2002) Facioscapulohumeral muscular dystrophy is uniquely associated with one of the two variants of the 4q subtelomere. Nat Genet 32(2):235–236. doi: 10.1038/ng999ng999 CrossRefPubMedGoogle Scholar
  31. Lemmers RJ, van der Vliet PJ, Klooster R et al (2010) A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329:1650–1653. doi: 10.1126/science.1189044 CrossRefPubMedGoogle Scholar
  32. Lessing D, Anguera MC, Lee JT (2013) X chromosome inactivation and epigenetic responses to cellular reprogramming. Annu Rev Genomics Hum Genet 14:85–110. doi: 10.1146/annurev-genom-091212-153530 CrossRefPubMedGoogle Scholar
  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitiatve PCR and the 2-ΔΔCT method. Methods 25(4):402–408, ISSN 1046-2023CrossRefPubMedGoogle Scholar
  34. Lobanenkov VV, Nicolas RH, Adler VV et al (1990) A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5′-flanking sequence of the chicken c-myc gene. Oncogene 5(12):1743–1753PubMedGoogle Scholar
  35. Lyon MF (2002) X-chromosome inactivation and human genetic disease. Acta Paediatr Suppl 91(439):107–112CrossRefPubMedGoogle Scholar
  36. Mahmood A, Harkness L, Schroder HD, Abdallah BM, Kassem M (2010) Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542. J Bone Min Res : Off J Am Soc Bone Min Res 25(6):1216–1233. doi: 10.1002/jbmr.34 CrossRefGoogle Scholar
  37. McLaughlin CR, Chadwick BP (2011) Characterization of DXZ4 conservation in primates implies important functional roles for CTCF binding, array expression and tandem repeat organization on the X chromosome. Genome Biol 12:R37PubMedCentralCrossRefPubMedGoogle Scholar
  38. Minkovsky A, Patel S, Plath K (2012) Concise review: pluripotency and the transcriptional inactivation of the female Mammalian X chromosome. Stem Cells 30(1):48–54. doi: 10.1002/stem.755 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Moseley SC, Rizkallah R, Tremblay DC, Anderson BR, Hurt MM, Chadwick BP (2012) YY1 associates with the macrosatellite DXZ4 on the inactive X chromosome and binds with CTCF to a hypomethylated form in some male carcinomas. Nucleic Acids Res 40(4):1596–1608. doi: 10.1093/nar/gkr964 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Okada T, Gondo Y, Goto J, Kanazawa I, Hadano S, Ikeda JE (2002) Unstable transmission of the RS447 human megasatellite tandem repetitive sequence that contains the USP17 deubiquitinating enzyme gene. Hum Genet 110(4):302–313CrossRefPubMedGoogle Scholar
  41. Ottaviani A, Rival-Gervier S, Boussouar A et al (2009) The D4Z4 macrosatellite repeat acts as a CTCF and A-type lamins-dependent insulator in facio-scapulo-humeral dystrophy. PLoS Genet 5(2):e1000394PubMedCentralCrossRefPubMedGoogle Scholar
  42. Parkhomchuk D, Borodina T, Amstislavskiy V et al (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37(18):e123. doi: 10.1093/nar/gkp596 PubMedCentralCrossRefPubMedGoogle Scholar
  43. Plath K, Fang J, Mlynarczyk-Evans SK et al (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300(5616):131–135CrossRefPubMedGoogle Scholar
  44. Pohlers M, Calabrese JM, Magnuson T (2014) Small RNA expression from the human macrosatellite DXZ4. G3. doi: 10.1534/g3.114.012260
  45. Rao SSP, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1–16CrossRefGoogle Scholar
  46. Santos-Rosa H, Schneider R, Bannister AJ et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419(6905):407–411CrossRefPubMedGoogle Scholar
  47. Schaap M, Lemmers RJ, Maassen R et al (2013) Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions. BMC Genomics 14:143. doi: 10.1186/1471-2164-14-143 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6(1):73–77CrossRefPubMedGoogle Scholar
  49. Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12(6):R54. doi: 10.1186/gb-2011-12-6-r54 PubMedCentralCrossRefPubMedGoogle Scholar
  50. Szulwach KE, Li X, Li Y et al (2011a) Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet 7(6):e1002154. doi: 10.1371/journal.pgen.1002154PGENETICS-D-11-00676 PubMedCentralCrossRefPubMedGoogle Scholar
  51. Szulwach KE, Li X, Li Y et al (2011b) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14(12):1607–1616. doi: 10.1038/nn.2959 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Teller K, Illner D, Thamm S et al (2011) A top-down analysis of Xa- and Xi-territories reveals differences of higher order structure at >/= 20 Mb genomic length scales. Nucleus 2(5):465–477. doi: 10.4161/nucl.2.5.17862 CrossRefPubMedGoogle Scholar
  53. Tremblay DC, Alexander G Jr, Moseley S, Chadwick BP (2010) Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome. BMC Genomics 11:632PubMedCentralCrossRefPubMedGoogle Scholar
  54. Tremblay DC, Moseley S, Chadwick BP (2011) Variation in array size, monomer composition and expression of the macrosatellite DXZ4. PLoS ONE 6(4):e18969. doi: 10.1371/journal.pone.0018969 PubMedCentralCrossRefPubMedGoogle Scholar
  55. van Deutekom JC, Wijmenga C, van Tienhoven EA et al (1993) FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum Mol Genet 2(12):2037–2042CrossRefPubMedGoogle Scholar
  56. van Overveld PG, Lemmers RJ, Sandkuijl LA et al (2003) Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat Genet 35(4):315–317CrossRefPubMedGoogle Scholar
  57. Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W (2013) CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res 41(6):e74. doi: 10.1093/nar/gkt006 PubMedCentralCrossRefPubMedGoogle Scholar
  58. Warburton PE, Hasson D, Guillem F, Lescale C, Jin X, Abrusan G (2008) Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genomics 9:533PubMedCentralCrossRefPubMedGoogle Scholar
  59. Wijmenga C, Hewitt JE, Sandkuijl LA et al (1992) Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 2(1):26–30CrossRefPubMedGoogle Scholar
  60. Yang F, Deng X, Berletch JB et al (2015) The lncRNA Firre anchors the inactive X chromsoome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Gen Biol 16:52. doi: 10.1186/s13059-015-0618-0 CrossRefGoogle Scholar
  61. Yu M, Hon GC, Szulwach KE et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149(6):1368–1380. doi: 10.1016/j.cell.2012.04.027 PubMedCentralCrossRefPubMedGoogle Scholar
  62. Zeng W, de Greef JC, Chen YY et al (2009) Specific loss of histone H3 lysine 9 trimethylation and HP1gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet 5(7):e1000559. doi: 10.1371/journal.pgen.1000559 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Debbie M. Figueroa
    • 1
    • 2
  • Emily M. Darrow
    • 1
  • Brian P. Chadwick
    • 1
  1. 1.Department of Biological ScienceFlorida State UniversityTallahasseeUSA
  2. 2.NHLBI, National Institutes of HealthBethesdaUSA

Personalised recommendations