Advertisement

Chromosome Research

, Volume 23, Issue 2, pp 211–223 | Cite as

Intragenomic distribution of RTE retroelements suggests intrachromosomal movement

  • Eugenia E. Montiel
  • Francisco J. Ruiz-Ruano
  • Josefa Cabrero
  • Juan Alberto Marchal
  • Antonio Sánchez
  • Francisco Perfectti
  • María Dolores López-León
  • Juan Pedro M. Camacho
Article

Abstract

Much is known about the abundance of transposable elements (TEs) in eukaryotic genomes, but much is still unknown on their behaviour within cells. We employ here a combination of cytological, molecular and genomic approaches providing information on the intragenomic distribution and behaviour of non-long terminal repeat (LTR) retrotransposon-like elements (RTE). We microdissected every chromosome in a single first meiotic metaphase cell of the grasshopper Eyprepocnemis plorans and polymerase chain reaction (PCR) amplified a fragment of the RTE reverse transcriptase gene with specific primers. PCR products were cloned and 139 clones were sequenced. Analysis of molecular variance (AMOVA) showed significant intragenomic structure for these elements, with 4.6 % of molecular variance being found between chromosomes. A maximum likelihood tree built with the RTE sequences revealed the frequent presence of two or more elements showing very high similarity and being located on the same chromosome, thus suggesting intrachromosome movement. The 454 pyrosequencing of genomic DNA gave strong support to the microdissection results and provided evidence for the existence of 5′ truncated elements. Our results thus indicate a tendency of RTE elements to reinsert into the same chromosome from where they were transcribed, which could be achieved if retrotranscription and insertion takes place immediately after transcription.

Keywords

454 sequencing Intrachromosomal Intragenomic Microdissection RTE Transposable elements 

Abbreviations

AMOVA

Analysis of molecular variance

dNTP

Deoxynucleoside triphosphate

LINE

Long interspersed nuclear element

LTR

Long terminal repeat

ORF

Open reading frame

PCR

Polymerase chain reaction

RTE

Non-LTR retrotransposon-like element

SINE

Short interspersed nuclear element

TE

Transposable element

Notes

Acknowledgments

We thank Karl R. Meunier for the English review. This study was supported by the Plan Andaluz de Investigación (P10-CVI-6649), and was partially performed by FEDER funds.

Supplementary material

10577_2014_9461_Fig4_ESM.jpg (912 kb)
Fig. S1

Metaphase I cell from which all chromosomes were individually microdissected (JPEG 912 kb)

10577_2014_9461_Fig5_ESM.jpg (236 kb)
Fig. S2

Alignment of the RTE-1_EP and RTE-2_EP elements showing the anchoring sites of the primers used for the microdissection experiment. Note the absence of homology of these primers with the RTE-2_EP elements (JPEG 235 kb)

10577_2014_9461_MOESM1_ESM.doc (44 kb)
Table S1 (DOC 43 kb)
10577_2014_9461_MOESM2_ESM.doc (48 kb)
Table S2 (DOC 47 kb)
10577_2014_9461_MOESM3_ESM.doc (48 kb)
Table S3 (DOC 48 kb)
10577_2014_9461_MOESM4_ESM.doc (46 kb)
Table S4 (DOC 46 kb)

References

  1. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552CrossRefPubMedGoogle Scholar
  2. Bartolomé C, Maside X, Charlesworth B (2002) On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol 19:926–937CrossRefPubMedGoogle Scholar
  3. Bates GP, Wainwright BJ, Williamson R, Brown SD (1986) Microdissection of and microcloning from the short arm of human chromosome 2. Mol Cell Biol 6:3826–3830PubMedCentralPubMedGoogle Scholar
  4. Bergman CM, Bensasson D (2007) Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster. Proc Nat Acad Sci USA 104:11340–11345CrossRefPubMedCentralPubMedGoogle Scholar
  5. Buiting K, Neumann M, Lüdecke HJ, Senger G, Claussen U, Antich J, Passarge E, Horsthemke B (1990) Microdissection of the Prader-Willi syndrome chromosome region and identification of potential gene sequences. Genomics 6:521–527CrossRefPubMedGoogle Scholar
  6. Camacho JPM (2005) B Chromosomes. In The Evolution of the Genome. Edited by Gregory T R. San Diego, 223–286Google Scholar
  7. Camacho JPM, Sharbel TF, Beukeboom LW (2000) B-chromosome evolution. Philos Trans R Soc Lond B 355:163–178CrossRefGoogle Scholar
  8. Cannizzaro LA (1996) Chromosome microdissection: a brief overview. Cytogenet Cell Genet 74:157–160CrossRefPubMedGoogle Scholar
  9. Charles M, Belcram H, Just J, Huneau C, Viollet A, Couloux A, Segurens B, Carter M, Huteau V, Coriton O, Appels R, Samain S, Chalhoub B (2008) Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics 180:1071–1086CrossRefPubMedCentralPubMedGoogle Scholar
  10. Cheng YM, Lin BY (2003) Cloning and characterization of maize B chromosome sequences derived from microdissection. Genetics 164:299–310PubMedCentralPubMedGoogle Scholar
  11. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301CrossRefPubMedGoogle Scholar
  12. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465-W469Google Scholar
  13. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v4.6. http://www.geneious.com/
  14. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma Online 1:47–50Google Scholar
  15. Gomulski LM, Torti C, Murelli V, Bonizzoni M, Gasperi G, Malacrida AR (2004) Medfly transposable elements: diversity, evolution, genomic impact and possible applications. Insect Biochem Mol 34:139–148CrossRefGoogle Scholar
  16. Guan XY, Meltzer PS, Trent JM (1994) Rapid generation of whole chromosome painting probes (WCPs) by chromosome microdissection. Genomics 22:101–107CrossRefPubMedGoogle Scholar
  17. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  18. Hall LL, Carone DW, Gomez AV, Kolpa HJ, Byron M, Mehta N, Fackelmayer FO, Lawrence JB (2014) Stable CoT-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156:907–919CrossRefPubMedCentralPubMedGoogle Scholar
  19. Hollister JD, Gaut BS (2007) Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana. Mol Biol Evol 24:2515–2524CrossRefPubMedGoogle Scholar
  20. Hood ME, Katawczik M, Giraud T (2005) Repeat-induced point mutation and the population structure of transposable elements in Microbotryum violaceum. Genetics 170:1081–1089CrossRefPubMedCentralPubMedGoogle Scholar
  21. Houben A, Field BL, Saunders VA (2001) Microdissection and chromosome painting of plant B chromosomes. Methods Cell Sci 23:115–124CrossRefGoogle Scholar
  22. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267CrossRefPubMedGoogle Scholar
  23. Kejnovsky E, Hobza R, Kubat Z, Widmer A, Marais GAB, Vyskot B (2007) High intrachromosomal similarity of retrotransposon long terminal repeats: evidence for homogenization by gene conversion on plant sex chromosomes? Gene 390:92–97CrossRefPubMedGoogle Scholar
  24. Lamb JC, Kato A, Birchler JA (2005) Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma 113:337–349CrossRefPubMedGoogle Scholar
  25. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMedGoogle Scholar
  26. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  27. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605CrossRefPubMedGoogle Scholar
  28. Mahjoubi F, Peters GB, Malafiej P, Shalhoub C, Turner A, Daniel A, Hill RJ (2005) An analphoid marker chromosome inv dup(15)(q26.1qter), detected during prenatal diagnosis and characterized via chromosome microdissection. Cytogenet Genome Res 109:485–490CrossRefPubMedGoogle Scholar
  29. Malik HS, Eickbush TH (1998) The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINE elements. Mol Biol Evol 15:1123–1134CrossRefPubMedGoogle Scholar
  30. Marchal JA, Acosta MJ, Bullejos M, Guardia RD, Sánchez A (2004) A repeat DNA sequence from the Y chromosome in species of the genus Microtus. Chromosome Res 12:757–765CrossRefPubMedGoogle Scholar
  31. Montiel EE, Cabrero J, Camacho JPM, López-León MD (2012) Gyspy, RTE and Mariner transposable elements populate Eyprepocnemis plorans genome. Genetica 140:365–374CrossRefPubMedGoogle Scholar
  32. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  33. Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793CrossRefPubMedGoogle Scholar
  34. Ruiz-Ruano FJ, Ruiz-Estévez M, Rodríguez-Pérez J, López-Pino JL, Cabrero J, Camacho JPM (2011) DNA Amount of X and B Chromosomes in the Grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenet Genome Res 134:120–126CrossRefPubMedGoogle Scholar
  35. Sánchez-Gracia A, Maside X, Charlesworth B (2005) High rate of horizontal transfer of transposable elements in Drosophila. Trends Genet 21:200–20328CrossRefPubMedGoogle Scholar
  36. Scalenghe F, Turco E, Edstrom JE, Pirrotta V, Melli M (1981) Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma 82:205–216CrossRefPubMedGoogle Scholar
  37. Smit AFA, Hubley R, Green P (2010) RepeatMasker Open-3.0. 1996–2010 <http://www.repeatmasker.org>
  38. Subramanian RA, Akala OO, Adejinmi JO, O’Brochta DA (2008) Topi, an IS630/Tc1/mariner-type transposable element in the African malaria mosquito, Anopheles gambiae. Gene 423:63–71CrossRefPubMedCentralPubMedGoogle Scholar
  39. Tamura K, Dudley J, Masatoshi N, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  40. Tay WT, Behere GT, Batterham P, Heckel DG (2010) Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes. BMC Evol Biol 10:144CrossRefPubMedCentralPubMedGoogle Scholar
  41. Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J (2011) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 3:219–229CrossRefPubMedCentralPubMedGoogle Scholar
  42. Teruel M, Cabrero J, Perfectti F, Acosta MJ, Sánchez A, Camacho JPM (2009) Microdissection and chromosome painting of X and B chromosomes in the grasshopper Eyprepocnemis plorans. Cytogenet Genome Res 125:286–291CrossRefPubMedGoogle Scholar
  43. Teruel M, Cabrero J, Perfectti F, Camacho JPM (2010) B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 119:217–225CrossRefPubMedGoogle Scholar
  44. Teruel M, Ruíz-Ruano FJ, Marchal JA, Sánchez A, Cabrero J, Camacho JPM, Perfectti F (2014) Disparate molecular evolution of two types of repetitive DNA in the genome of the grasshopper Eyprepocnemis plorans. Heredity 112:531–542CrossRefPubMedCentralPubMedGoogle Scholar
  45. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedCentralPubMedGoogle Scholar
  46. Vieira C, Lepetit D, Dumont S, Biemont C (1999) Wake up of transposable elements following Drosophila simulans worldwide colonization. Mol Biol Evol 16:1251–1255CrossRefPubMedGoogle Scholar
  47. Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci U S A 2006(103):17638–17643CrossRefGoogle Scholar
  48. Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, Li B, Cui F, Wei J, Ma C, Wang Y, He J, Luo Y, Wang Z, Guo X, Guo W, Wang X, Zhang Y, Yang M, Hao S, Chen B, Ma Z, Yu D, Xiong Z, Zhu Y, Fan D, Han L, Wang B, Chen Y, Wang J et al (2014) The locust genome provides insight into swarm formation and long-distance flight. Nat Commun 5:2957PubMedCentralPubMedGoogle Scholar
  49. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276CrossRefPubMedGoogle Scholar
  50. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982CrossRefPubMedGoogle Scholar
  51. Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7CrossRefPubMedGoogle Scholar
  52. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362PubMedCentralPubMedGoogle Scholar
  53. Zhou RN, Hu ZM (2007) The development of chromosome microdissection and microcloning technique and its applications in genomic research. Curr Genomics 8:67–72CrossRefPubMedCentralPubMedGoogle Scholar
  54. Zingler N, Willhoeft U, Brose HP, Schoder V, Jahns T, Hanschmann KM, Morrish TA, Löwer J, Schumann GG (2005) Analysis of 5′ junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5′-end attachment requiring microhomology-mediated end-joining. Genome Res 15:780–789CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Eugenia E. Montiel
    • 1
  • Francisco J. Ruiz-Ruano
    • 1
  • Josefa Cabrero
    • 1
  • Juan Alberto Marchal
    • 2
  • Antonio Sánchez
    • 2
  • Francisco Perfectti
    • 1
  • María Dolores López-León
    • 1
  • Juan Pedro M. Camacho
    • 1
  1. 1.Departamento de Genética, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Biología Experimental, Facultad de Ciencias ExperimentalesUniversidad de JaénJaénSpain

Personalised recommendations