Chromosome Research

, Volume 22, Issue 4, pp 495–503 | Cite as

Distribution of TTAGG-specific telomerase activity in insects

  • Michala Korandová
  • Tomáš Krůček
  • Kristýna Vrbová
  • Radmila Čapková FrydrychováEmail author


In most eukaryotes, telomeres consist of tandem arrays of a short repetitive DNA sequence. Insect telomeres are generally constituted by a (TTAGG)n repeat motif. Usually, telomeres are maintained by telomerase, a specialized reverse transcriptase that adds this sequence to chromosome ends. We examined telomerase activity in 15 species across Insecta. Telomerase activity was revealed in Isoptera, Blattaria, Lepidoptera, Hymenoptera, Trichoptera, Coleoptera, and Sternorrhyncha. In contrast, we were not able to detect telomerase activity in Orthoptera, Zygentoma, and Phasmida. Because we found telomerase activity in phylogenetically distant species, we conclude that a distribution pattern of (TTAGG)n sequence in Insecta is generally consistent with that of telomerase activity. Thus, the TTAGG-telomerase system is functional across the Insecta. Using real-time quantitative telomeric repeat amplification protocol (RTQ-TRAP) system, we quantified telomerase activity in different developmental stages and different tissues of a cockroach, Periplaneta americana. We show that telomerase is upregulated in young instars and gradually declines during development. In adults, it is most active in testes and ovaries. Thus, the telomerase activity of hemimetabolous insects seems to be associated with cell proliferation and organismal development.


Insects telomere telomerase 



Telomerase reverse transcriptase (TERT)


Telomeric repeat amplification protocol


Real-time quantitative TRAP



We are grateful to James Mason for critical review of the manuscript, Aleš Bezděk, Jan Šobotník, Petr Doležal, and David Boukal, who provided us with live materials. This work was supported by the Grant No. 14-07172S from the Grant Agency of the Czech Republic. We acknowledge the use of research infrastructure that has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 316304. Additional support was provided from Grant 052/2013/P of the Grant Agency of the University of South Bohemia.

Ethical standards

The authors declare that all experiments performed in this study comply with the current laws of the Czech Republic. All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

Michala Korandová, Tomáš Krůček, Kristýna Vrbová, and Radmila Čapková Frydrychová declare that they have no conflict of interest.


  1. Biessmann H, Zurovcova M, Yao JG et al. (2000) A telomeric satellite in Drosophila virilis and its sibling species. Chromosoma 109:372–380PubMedCrossRefGoogle Scholar
  2. Capkova Frydrychova R, Mason JM, Biessmann H (2009) Regulation of telomere length in Drosophila. Cytogenet Genome Res 122:356–364CrossRefGoogle Scholar
  3. Casacuberta E, Pardue M-L (2003) HeT-A elements in Drosophila virilis: retrotransposon telomeres are conserved across the Drosophila genus. Proc Natl Acad Sci U S A 100:14091–14096PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chan SW, Blackburn EH (2002) New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21:553–563PubMedCrossRefGoogle Scholar
  5. Cong Y, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425PubMedCentralPubMedCrossRefGoogle Scholar
  6. Coviello-McLaughlin GM, Prowse KR (1997) Telomere length regulation during postnatal development and ageing in Mus spretus. Nucleic Acids Res 25:3051–3058PubMedCentralPubMedCrossRefGoogle Scholar
  7. Delany ME, Krupkin AB, Miller MM (2000) Organization of telomere sequences in birds: evidence for arrays of extreme length and for in vivo shortening. Cytogenet Genome Res 90(1-2):139-45.Google Scholar
  8. Frydrychova R, Marec F (2002) Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica 115:179–187PubMedCrossRefGoogle Scholar
  9. Frydrychova R, Grossmann P, Trubac P et al. (2004) Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 47:163–178PubMedCrossRefGoogle Scholar
  10. Fujiwara H, Osanai M, Matsumoto T, Kojima KK (2005) Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori. Chromosom Res 13:455–467Google Scholar
  11. Gomes NMV, Shay JW, Wright WE (2011) Telomere biology in Metazoa. Fed Eur Biochem Soc 584:3741–3751CrossRefGoogle Scholar
  12. Greider CW (1996) Telomere length regulation. Annu Rev Biochem 65:337–365PubMedCrossRefGoogle Scholar
  13. Klapper W, Kühne K, Singh KK et al. (1998) Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Lett 439:143–146PubMedCrossRefGoogle Scholar
  14. Kubo Y, Okazaki S, Anzai T, Fujiwara H (2001) Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in Lepidopteran insects. Mol Biol Evol 18:848–857Google Scholar
  15. Mason JM, Frydrychova RC, Biessmann H (2008) Drosophila telomeres: an exception providing new insights. Bioessays 30:25–37PubMedCentralPubMedCrossRefGoogle Scholar
  16. Meyne J, Ratliff RL, Moyzis RK (1989) Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A 86:7049–7053PubMedCentralPubMedCrossRefGoogle Scholar
  17. Moyzis RK, Buckingham JM, Cram LS et al. (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85:6622–6626PubMedCentralPubMedCrossRefGoogle Scholar
  18. Mravinac B, Meštrović N, Cavrak VV, Plohl M (2011) TCAGG, an alternative telomeric sequence in insects. Chromosoma 120:367–376PubMedCrossRefGoogle Scholar
  19. Okazaki S, Ishikawa H, Fujiwara H (1995) Structural analysis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm, Bombyx mori. Mol Cell Biol 15:4545–4552Google Scholar
  20. Osanai M, Kojima KK, Futahashi R et al (2006) Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). Gene 376:281–289PubMedCrossRefGoogle Scholar
  21. Peška V, Sykorova E, Fajkus J (2008) Two faces of Solanaceae telomeres: a comparison between Nicotiana and Cestrum telomeres and telomere-binding proteins. Cytogenet Genome Res 122:380–387PubMedCrossRefGoogle Scholar
  22. Prowse KR, Greider CW (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci U S A 92:4818–4822PubMedCentralPubMedCrossRefGoogle Scholar
  23. Riha K, Fajkus J, Siroky J, Vyskot B (1998) Developmental control of telomere lengths and telomerase activity in plants. Plant Cell 10:1691–1698PubMedCentralPubMedCrossRefGoogle Scholar
  24. Roth CW, Kobeski F, Walter MF, Biessmann H (1997) Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol Cell Biol 17:5176–5183PubMedCentralPubMedGoogle Scholar
  25. Sahara K, Marec F, Traut W (1999) TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res 7:449–460PubMedCrossRefGoogle Scholar
  26. Sasaki T, Fujiwara H (2000) Detection and distribution patterns of telomerase activity in insects. Eur J Biochem 267:3025–3031PubMedCrossRefGoogle Scholar
  27. Sýkorová E, Leitch AR, Fajkus J (2006) Asparagales telomerases which synthesize the human type of telomeres. Plant Mol Biol 60:633–646PubMedCrossRefGoogle Scholar
  28. Traut W, Szczepanowski M, Vítková M et al. (2007) The telomere repeat motif of basal Metazoa. Chromosome Res 15:371–382PubMedGoogle Scholar
  29. Vítková M, Král J, Traut W et al. (2005) The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Res 13:145–156PubMedCrossRefGoogle Scholar
  30. Wege H, Chui MS, Le HT, et al. (2003) SYBR Green real-time telomeric repeat amplification protocol for the rapid quantification of telomerase activityGoogle Scholar
  31. Wicky C, Villeneuve AM, Lauper N et al. (1996) Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc Natl Acad Sci U S A 93:8983–8988PubMedCentralPubMedCrossRefGoogle Scholar
  32. Wright WE, Piatyszek MA, Rainey WE et al. (1996) Telomerase activity inhuman germline and embryonic tissues and cells. Dev Genet 18:173–179PubMedCrossRefGoogle Scholar
  33. Wyatt HDM, West SC, Beattie TL (2010) InTERTpreting telomerase structure and function. Nucleic Acids Res 38:5609–5622PubMedCentralPubMedCrossRefGoogle Scholar
  34. Zhou J, Ding D, Wang M, Cong Y-S (2014) Telomerase reverse transcriptase in the regulation of gene expression. BMB Rep 47:8–14PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Michala Korandová
    • 1
  • Tomáš Krůček
    • 1
    • 2
  • Kristýna Vrbová
    • 1
  • Radmila Čapková Frydrychová
    • 2
    Email author
  1. 1.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Biology Centre AS CRInstitute of EntomologyČeské BudějoviceCzech Republic

Personalised recommendations