Skip to main content
Log in

CDK11p58 kinase activity is required to protect sister chromatid cohesion at centromeres in mitosis

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The cyclin-dependent kinase CDK11p58 is specifically expressed at G2/M phase. CDK11p58 depletion leads to different cell cycle defects such as mitotic arrest, failure in centriole duplication and centrosome maturation, and premature sister chromatid separation. We report that upon CDK11 depletion, loss of sister chromatid cohesion occurs during mitosis but not during G2 phase. CDK11p58 depletion prevents Bub1 and Shugoshin 1 recruitment but has no effect on the dimethylation of histone H3 lysine 4 at centromeres. We also report that a construct expressing a kinase dead version of CDK11p58 fails to prevent CDK11 depletion-induced sister chromatid separation, showing that CDK11p58 kinase activity is required for protection of sister chromatid cohesion at centromeres during mitosis. Thus, CDK11p58 kinase activity appears to be involved in early events in the establishment of the centromere protection machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CDK11p58 :

Cyclin-dependent kinase 11, p58 isoform

CDK11p110 :

Cyclin-dependent kinase 11, p110 isoform

CREST:

Calcinosis, Raynaud’s phenomenon, esophageal dysmotility, and sclerodactyly telangiectasia

FISH:

Fluorescence in situ hybridization

H2AT120P:

Phosphorylated H2AT120

H3K4diM:

Dimethylated H3K4

H3S10P:

Phosphorylated H3S10

IRES:

Internal ribosomal entry site

PSCS:

Premature sister chromatids separation

SAC:

Spindle assembly checkpoint

siRNA:

Small interference RNA

References

  • Alexandru G, Uhlmann F, Mechtler K, Poupart MA, Nasmyth K (2001) Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105:459–472

    Article  CAS  PubMed  Google Scholar 

  • Cornelis S, Bruynooghe Y, Denecker G, van Huffel S, Tinton S, Beyaert R (2000) Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5:597–605

    Article  CAS  PubMed  Google Scholar 

  • Eot-Houllier G, Fulcrand G, Watanabe Y, Magnaghi-Jaulin L, jaulin C (2008) Histone deacetylase 3 is required for centromeric H3K4 deacetylation and sister chromatid cohesion. Genes Dev 22:2639–2644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franck N, Montembault E, Rome P, Pascal A, Cremet JY, Giet R (2011) CDK11(p58) is required for centriole duplication and Plk4 recruitment to mitotic centrosomes. PLoS One 6:e14600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gimenez-Abian JF, Sumara I, Hirota T, Hauf S, Gerlich D, De la Torre C, Ellenberg J, Peters JM (2004) Regulation of sister chromatid cohesion between chromosome arms. Curr Biol 14:1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Gururajan R, Grenet J, Lahti JM, Kidd VJ (1998) Isolation and characterization of two novel metalloproteinase genes linked to the Cdc2L locus on human chromosome 1p36.3. Genomics 52:101–106

    Article  CAS  PubMed  Google Scholar 

  • Hauf S, Roitinger E, Koch B, Dittrich CM, Mechtler K, Peters JM (2005) Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol 3:e69

    Article  PubMed Central  PubMed  Google Scholar 

  • Hauf S, Waizenegger IC, Peters JM (2001) Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293:1320–1323

    Article  CAS  PubMed  Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA, van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    Article  CAS  PubMed  Google Scholar 

  • Holland AJ, Cleveland DW (2012) Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 13:501–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu D, Mayeda A, Trembley JH, Lahti JM, Kidd VJ (2003) CDK11 complexes promote pre-mRNA splicing. J Biol Chem 278:8623–8629

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Valentine M, Kidd VJ, Lahti JM (2007) CDK11(p58) is required for the maintenance of sister chromatid cohesion. J Cell Sci 120:2424–2434

    Article  CAS  PubMed  Google Scholar 

  • Kawashima SA, Yamagishi Y, Honda T, Ishiguro K, Watanabe Y (2010) Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327:172–177

    Article  CAS  PubMed  Google Scholar 

  • Kitajima TS, Hauf S, Ohsugi M, Yamamoto T, Watanabe Y (2005) Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr Biol 15:353–359

    Article  CAS  PubMed  Google Scholar 

  • Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441:46–52

    Article  CAS  PubMed  Google Scholar 

  • Klebig C, Korinth D, Meraldi P (2009) Bub1 regulates chromosome segregation in a kinetochore-independent manner. J Cell Biol 185:841–858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mcguinness BE, Hirota T, Kudo NR, Peters JM, Nasmyth K (2005) Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol 3:e86

    Article  PubMed Central  PubMed  Google Scholar 

  • Nasmyth K (2011) Cohesin: a catenase with separate entry and exit gates? Nat Cell Biol 13:1170–1177

    CAS  PubMed  Google Scholar 

  • Nishiyama T, Ladurner R, Schmitz J, Kreidl E, Schleiffer A, Bhaskara V, Bando M, Shirahige K, Hyman AA, Mechtler K, Peters JM (2010) Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143:737–749

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama T, Sykora MM, Huis In’t Veld PJ, Mechtler K, Peters JM (2013) Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. Proc Natl Acad Sci U S A 110:13404–13409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perera D, Taylor SS (2010) Sgo1 establishes the centromeric cohesion protection mechanism in G2 before subsequent Bub1-dependent recruitment in mitosis. J Cell Sci 123:653–659

    Article  CAS  PubMed  Google Scholar 

  • Petretti C, Savoian M, Montembault E, Glover DM, Prigent C, Giet R (2006) The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep 7:418–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riedel CG, Katis VL, Katou Y, Mori S, Itoh T, Helmhart W, Galova M, Petronczki M, Gregan J, Cetin B, Mudrak I, Ogris E, Mechtler K, Pelletier L, Buchholz F, Shirahige K, Nasmyth K (2006) Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441:53–61

    Article  CAS  PubMed  Google Scholar 

  • Rieder CL (2011) Mitosis in vertebrates: the G2/M and M/A transitions and their associated checkpoints. Chromosome Res 19:291–306

    Article  PubMed  Google Scholar 

  • Salic A, Waters JC, Mitchison TJ (2004) Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118:567–578

    Article  CAS  PubMed  Google Scholar 

  • Schmitz J, Watrin E, Lenart P, Mechtler K, Peters JM (2007) Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr Biol 17:630–636

    Article  CAS  PubMed  Google Scholar 

  • Sonoda E, Matsusaka T, Morrison C, Vagnarelli P, Hoshi O, Ushiki T, Nojima K, Fukagawa T, Waizenegger IC, Peters JM, Earnshaw WC, Takeda S (2001) Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev Cell 1:759–770

    Article  CAS  PubMed  Google Scholar 

  • Sumara I, Vorlaufer E, Gieffers C, Peters BH, Peters JM (2000) Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol 151:749–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torres EM, Williams BR, Amon A (2008) Aneuploidy: cells losing their balance. Genetics 179:737–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trembley JH, Loyer P, Hu D, Li T, Grenet J, Lahti JM, Kidd VJ (2004) Cyclin dependent kinase 11 in RNA transcription and splicing. Prog Nucleic Acid Res Mol Biol 77:263–288

    Article  CAS  PubMed  Google Scholar 

  • Uhlmann F, Lottspeich F, Nasmyth K (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400:37–42

    Article  CAS  PubMed  Google Scholar 

  • Waizenegger IC, Hauf S, Meinke A, Peters JM (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410

    Article  CAS  PubMed  Google Scholar 

  • Wang LH, Mayer B, Stemmann O, Nigg EA (2010) Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division. J Cell Sci 123:806–813

    Article  CAS  PubMed  Google Scholar 

  • Watrin E, Schleiffer A, Tanaka K, Eisenhaber F, Nasmyth K, Peters JM (2006) Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr Biol 16:863–874

    Article  CAS  PubMed  Google Scholar 

  • Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Yoshinori Watanabe (University of Tokyo, Japan) and Isabelle Bahon-Riedinger (Rennes University Hospital, France) for the gift of reagents and to Erwan Watrin (IGDR, CNRS, Rennes, France) for stimulating helpful discussions. T.R. is supported by a Ligue Contre le Cancer/Région Bretagne fellowship. C.J. is an investigator at the Institut National de la Santé et de la Recherche Médicale (INSERM). Funding was from the French National Research Agency (ANR, project “EpiCentr”), the Région Bretagne (SAD grant), the Cancéropôle Grand-Ouest, the Ligue Contre le Cancer (Comité Grand Ouest), and the Fondation ARC pour la Recherche sur le Cancer.

Conflict of interest

The authors (T.R, C.E., R.G., L.M.-J., and C.J.) declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jaulin.

Additional information

Communicated by: Beth A. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakkaa, T., Escudé, C., Giet, R. et al. CDK11p58 kinase activity is required to protect sister chromatid cohesion at centromeres in mitosis. Chromosome Res 22, 267–276 (2014). https://doi.org/10.1007/s10577-013-9400-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-013-9400-x

Keywords

Navigation