Advertisement

Chromosome Research

, Volume 21, Issue 6–7, pp 685–693 | Cite as

Epigenetic regulation by long noncoding RNAs in plants

  • Jae Bok Heo
  • Yong-Suk Lee
  • Sibum SungEmail author
Review

Abstract

Many eukaryotes, including plants, produce a large number of long noncoding RNAs (lncRNAs). Growing number of lncRNAs are being reported to have regulatory roles in various developmental processes. Emerging mechanisms underlying the function of lncRNAs indicate that lncRNAs are versatile regulatory molecules. They function as potent cis- and trans-regulators of gene expression, including the formation of modular scaffolds that recruit chromatin-modifying complexes to target chromatin. LncRNAs have also been reported in plants. Here, we describe our current understanding on potential roles of lncRNA in plants.

Keywords

Long noncoding RNA (lncRNA) Chromatin modification RNA-seq Gene silencing Gene activation 

Abbreviations

ncRNA

Noncoding RNA

lncRNA

Long noncoding RNA

miRNA

Micro RNA

siRNA

Small interfering RNA

piRNA

Piwi-interacting RNA

RNA-seq

RNA sequencing

lincRNA

Long intergenic ncRNA

PHD

Plant homeodomain

PRC2

Polycomb repressive complex 2

Notes

Acknowledgments

J.B. Heo is supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant no.: PJ00951601) and by the National Research Foundation of Korea (NRF-MEST no. 2011–0013137). S. Sung is supported by the University of Texas at Austin, National Science Foundation (IOS-0950785) and National Institute of Health (R01GM100108).

References

  1. Alvarez-Venegas R, Avramova Z (2001) Two Arabidopsis homologs of the animal trithorax genes: a new structural domain is a signature feature of the trithorax gene family. Gene 271:215–221Google Scholar
  2. Aubert D, Chen L, Moon YH, Martin D, Castle LA, Yang CH, Sung ZR (2001) EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13:1865–1875PubMedGoogle Scholar
  3. Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84–87PubMedCrossRefGoogle Scholar
  4. Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167PubMedCrossRefGoogle Scholar
  5. Ben Amor B, Wirth S, Merchan F, Laporte P, d'Aubenton-Carafa Y et al (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69PubMedCrossRefGoogle Scholar
  6. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655PubMedCrossRefGoogle Scholar
  7. Berr A, Xu L, Gao J, Cognat V, Steinmetz A, Dong A, Shen WH (2009) SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. Plant Physiol 151: 1476–1485Google Scholar
  8. Bezhani S, Winter C, Hershman S, Wagner JD, Kennedy JF, Kwon CS, Pfluger J, Su Y, Wagner D (2007) Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED. Plant Cell 19:403–416PubMedCrossRefGoogle Scholar
  9. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR et al (2007) Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447:799–816PubMedCrossRefGoogle Scholar
  10. Bratzel F, Lopez-Torrejon G, Koch M, Del Pozo JC, Calonje M (2010) Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr Biol 20:1853–1859PubMedCrossRefGoogle Scholar
  11. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44PubMedCrossRefGoogle Scholar
  12. Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20:845–854PubMedCrossRefGoogle Scholar
  13. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369PubMedCrossRefGoogle Scholar
  14. Chaumeil J, Le Baccon P, Wutz A, Heard E (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20:2223–2237PubMedCrossRefGoogle Scholar
  15. Chitwood DH, Timmermans MC (2010) Small RNAs are on the move. Nature 467:415–419PubMedCrossRefGoogle Scholar
  16. De Lucia F, Dean C (2010) Long non-coding RNAs and chromatin regulation. Curr Opin Plant Biol 14:168–173Google Scholar
  17. De Lucia F, Crevillen P, Jones AM, Greb T, Dean C (2008) A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 105:16831–16836PubMedCrossRefGoogle Scholar
  18. De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384PubMedCrossRefGoogle Scholar
  19. Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20:1470–1484PubMedCrossRefGoogle Scholar
  20. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037PubMedCrossRefGoogle Scholar
  21. Fujita T, Kouchi H, Ichikawa T, Syono K (1993) Isolation and characterization of a cDNA that encodes a novel proteinase inhibitor I from a tobacco genetic tumor. Plant Cell Physiol 34:137–142PubMedGoogle Scholar
  22. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108PubMedCrossRefGoogle Scholar
  23. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300PubMedCrossRefGoogle Scholar
  24. Helliwell CA, Robertson M, Finnegan EJ, Buzas DM, Dennis ES (2011) Vernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcripts. PLoS One 6:e21513PubMedCrossRefGoogle Scholar
  25. Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79PubMedCrossRefGoogle Scholar
  26. Kaneko S, Li G, Son J, Xu CF, Margueron R, Neubert TA, Reinberg D (2010) Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev 24:2615–2620PubMedCrossRefGoogle Scholar
  27. Karreth FA, Tay Y, Perna D, Ala U, Tan SM et al (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395PubMedCrossRefGoogle Scholar
  28. Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299PubMedCrossRefGoogle Scholar
  29. Kim DH, Sung S (2012) Environmentally coordinated epigenetic silencing of FLC by protein and long noncoding RNA components. Curr Opin Plant Biol 15:51–56PubMedCrossRefGoogle Scholar
  30. Kim DH, Sung S (2013) Coordination of the vernalization response through a VIN3 and FLC gene family regulatory network in Arabidopsis. Plant Cell 25:454–469PubMedCrossRefGoogle Scholar
  31. Kim SY, He Y, Jacob Y, Noh YS, Michaels S, Amasino R (2005) Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. Plant Cell 17:3301–3310PubMedCrossRefGoogle Scholar
  32. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187PubMedCrossRefGoogle Scholar
  33. Ko JH, Mitina I, Tamada Y, Hyun Y, Choi Y, Amasino RM, Noh B, Noh YS (2010) Growth habit determination by the balance of histone methylation activities in Arabidopsis. EMBO J 29:3208–3215PubMedCrossRefGoogle Scholar
  34. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  35. Li L, Wang X, Stolc V, Li X, Zhang D, Su N, Tongprasit W, Li S, Cheng Z, Wang J, Deng XW (2006) Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet 38:124–129PubMedCrossRefGoogle Scholar
  36. Liu C, Muchhal US, Raghothama KG (1997) Differential expression of TPS11, a phosphate starvation-induced gene in tomato. Plant Mol Biol 33:867–874PubMedCrossRefGoogle Scholar
  37. Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345PubMedCrossRefGoogle Scholar
  38. Mylne JS, Barrett L, Tessadori F, Mesnage S, Johnson L, 607 Bernatavichute YV, Jacobsen SE, Fransz P, Dean C 608 (2006) LHP1, the Arabidopsis homologue of 609 HETEROCHROMATIN PROTEIN1, is required for epige- 610 netic silencing of FLC. Proc Natl Acad Sci U S A 103:5012– 611 5017Google Scholar
  39. Matsui A, Ishida J, Morosawa T, Okamoto M, Kim JM et al (2010) Arabidopsis tiling array analysis to identify the stress-responsive genes. Methods Mol Biol 639:141–155PubMedCrossRefGoogle Scholar
  40. Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA, Mattick JS, Rinn JL (2011) Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol 30:99–104PubMedCrossRefGoogle Scholar
  41. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P (2008) The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–1720PubMedCrossRefGoogle Scholar
  42. Ng DW, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC (2007) Plant SET domain-containing proteins: structure, function and regulation. Biochim Biophys Acta 1769:316–329PubMedCrossRefGoogle Scholar
  43. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573PubMedCrossRefGoogle Scholar
  44. Paul J, Duerksen JD (1975) Chromatin-associated RNA content of heterochromatin and euchromatin. Mol Cell Biochem 9:9–16Google Scholar
  45. Pien S, Fleury D, Mylne JS, Crevillen P, Inze D, Avramova Z, Dean C, Grossniklaus U (2008) ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell 20:580–588PubMedCrossRefGoogle Scholar
  46. Rehrauer H, Aquino C, Gruissem W, Henz SR, Hilson P et al (2010) AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling. Plant Physiol 152:487–499PubMedCrossRefGoogle Scholar
  47. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323PubMedCrossRefGoogle Scholar
  48. Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci U S A 99:1915–1920PubMedCrossRefGoogle Scholar
  49. Saleh A, Alvarez-Venegas R, Avramova Z (2008a) Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci. Gene 423:43–47PubMedCrossRefGoogle Scholar
  50. Saleh A, Alvarez-Venegas R, Yilmaz M, Le O, Hou G, Sadder M, Al-Abdallat A, Xia Y, Lu G, Ladunga I, Avramova Z (2008b) The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. Plant Cell 20:568–579PubMedCrossRefGoogle Scholar
  51. Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW, Muller J (2010) Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465:243–247PubMedCrossRefGoogle Scholar
  52. Sun Q, Csorba T, Skourti-Stathaki K, Proudfoot NJ, Dean C (2013) R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340:619–621PubMedCrossRefGoogle Scholar
  53. Sung S, Amasino RM (2004a) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164PubMedCrossRefGoogle Scholar
  54. Sung S, Amasino RM (2004b) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10PubMedCrossRefGoogle Scholar
  55. Sung S, He Y, Eshoo TW, Tamada Y, Johnson L, Nakahigashi K, Goto K, Jacobsen SE, Amasino RM (2006) Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat Genet 38:706–710PubMedCrossRefGoogle Scholar
  56. Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802PubMedCrossRefGoogle Scholar
  57. Tamada Y, Yun JY, Woo SC, Amasino RM (2009) ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell 21:3257–3269PubMedCrossRefGoogle Scholar
  58. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938Google Scholar
  59. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693PubMedCrossRefGoogle Scholar
  60. Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E, Buisine N, Gagnot S, Martienssen RA, Coupland G, Colot V (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:e86PubMedCrossRefGoogle Scholar
  61. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124PubMedCrossRefGoogle Scholar
  62. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243PubMedCrossRefGoogle Scholar
  63. Wood CC, Robertson M, Tanner G, Peacock WJ, Dennis ES, Helliwell CA (2006) The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci U S A 103:14631–14636PubMedCrossRefGoogle Scholar
  64. Xu L, Shen WH (2008) Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr Biol 18:1966–1971PubMedCrossRefGoogle Scholar
  65. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674PubMedCrossRefGoogle Scholar
  66. Yun JY, Tamada Y, Kang YE, Amasino RM (2012) Arabidopsis trithorax-related3/SET domain GROUP2 is required for the winter-annual habit of Arabidopsis thaliana. Plant Cell Physiol 53:834–846PubMedCrossRefGoogle Scholar
  67. Zhang X, Germann S, Blus BJ, Khorasanizadeh S, Gaudin V, Jacobsen SE (2007) The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol 14:869–871PubMedCrossRefGoogle Scholar
  68. Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE (2009) Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10:R62PubMedCrossRefGoogle Scholar
  69. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Molecular BiotechnologyDong-A UniversityBusanSouth Korea
  2. 2.Department of BiotechnologyDong-A UniversityBusanSouth Korea
  3. 3.Department of Molecular Biosciences and Institute for Cellular and Molecular BiologyUniversity of TexasAustinUSA

Personalised recommendations