Advertisement

Chromosome Research

, Volume 21, Issue 6–7, pp 673–684 | Cite as

Long noncoding RNAs as metazoan developmental regulators

  • Jamila I. HorabinEmail author
REVIEW

Abstract

The study of long noncoding RNAs (lncRNAs) is still in its infancy with more putative RNAs identified than those with ascribed functions. Defined as transcripts that are longer than 200 nucleotides without a coding sequence, their numbers are on the rise and may well challenge protein coding transcripts in number and diversity. lncRNAs are often expressed at low levels and their sequences are frequently poorly conserved, making it unclear if they are transcriptional noise or bonafide effectors. Despite these limitations, inroads into their functions are being made and it is clear they make a contribution in regulating all aspects of biology. The early verdict on their activity, however, suggests the majority function as chromatin modifiers. A good proportion show a connection to disease highlighting their importance and the need to determine their function. The focus of this review is on lncRNAs which influence developmental processes which in itself covers a large range of known activities.

Keywords

lncRNA development transcription chromatin modifiers scaffolds RNAP II pausing 

Abbreviations

BRD4

Bromodomain protein 4

CDK7

Cyclin dependent kinase 7

CoREST

Corepressor of RE1 silencing transcription factor

CTD

C-terminal domain

DCC

Dosage compensation complex

DNA

Deoxyribonucleic acid

HOTAIR

HOX antisense intergenic RNA

HOTTIP

HOXA transcript at the distal tip

lncRNAs

Long noncoding RNAs

mRNA

Messenger RNA

ORF

Open reading frame

P-TEFb

Positive transcription elongation factor b

PcG

Polycomb group

PRC2

Polycomb repressive complex 2

PRE

Polycomb response elements

RNA

Ribonucleic acid

RNAP II

RNA polymerase II

STAU1

Staufen 1 protein

TINCR

Terminal differentiation-induced ncRNA

TrxG

Trithorax group

Xist

X-inactive specific transcript

Notes

Acknowledgments

I would like to thank the Biomedical Sciences Department, College of Medicine at Florida State University for the financial support and the members of my lab for comments on the manuscript.

Conflict of interest

The author declares no conflict of interest.

References

  1. Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5:367–375PubMedCrossRefGoogle Scholar
  2. Akhtar MS et al (2009) TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol Cell 34:387–393PubMedCrossRefGoogle Scholar
  3. Alekseyenko AA et al (2008) A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 134:599–609PubMedCrossRefGoogle Scholar
  4. Banfai B et al (2012) Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 22:1646–1657PubMedCrossRefGoogle Scholar
  5. Bender W, Fitzgerald D (2002) Transcription activates repressed domains in the Drosophila bithorax complex. Development 129:4923–4930PubMedGoogle Scholar
  6. Bertani S et al (2011) The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 43:1040–1046PubMedCrossRefGoogle Scholar
  7. Buske FA et al (2012) Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Gen Res 22:1372–138CrossRefGoogle Scholar
  8. Cabili MN et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927PubMedCrossRefGoogle Scholar
  9. Carninci P, Yasuda J, Hayashizaki Y (2008) Multifaceted mammalian transcriptome. Curr Opin Cell Biol 20:274–280PubMedCrossRefGoogle Scholar
  10. Chu C et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678PubMedCrossRefGoogle Scholar
  11. Clark MB et al (2011) The reality of pervasive transcription. PLoS Biol 9:e1000625PubMedCrossRefGoogle Scholar
  12. Darrow EM, Chadwick BP (2013) Boosting transcription by transcription: enhancer associated transcripts. Chromosome Res. doi: 10.1007/s10577-013-9384-6
  13. Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789PubMedCrossRefGoogle Scholar
  14. Dieci G et al (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23:614–622PubMedCrossRefGoogle Scholar
  15. Dinger ME et al (2008) Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLOS Comput Biol 4:e1000176PubMedCrossRefGoogle Scholar
  16. Dinger ME, Gascoigne DK, Mattick JS (2011) The evolution of RNAs with multiple functions. Biochimie 93:2013–2018PubMedCrossRefGoogle Scholar
  17. Diribarne G, Bensaude O (2009) 7SK RNA, a non-coding RNA regulating P-TEFb, a general transcription factor. RNA Biol 6:122–128PubMedCrossRefGoogle Scholar
  18. Djebali S et al (2012) Landscape of transcription in human cells. Nature 489:101–108PubMedCrossRefGoogle Scholar
  19. Eissmann M et al (2012) Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 2012(9):1076–1087CrossRefGoogle Scholar
  20. Fong YW, Zhou Q (2001) Stimulatory effect of splicing factors on transcriptional elongation. Nature 414:929–933PubMedCrossRefGoogle Scholar
  21. Froberg JE, Yang L, Lee JT (2013) Guided by RNAs: X-inactivation as a model for lncRNA function. J Mol Biol 425:3698–3706PubMedCrossRefGoogle Scholar
  22. Gilmour DS, Lis JT (1986) RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol Cell Biol 6:3984–3989PubMedGoogle Scholar
  23. Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470:284–288PubMedCrossRefGoogle Scholar
  24. Guenther MG et al (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88PubMedCrossRefGoogle Scholar
  25. Gummalla M et al (2012) abd-A Regulation by the iab-8 Noncoding RNA. PLoS Genet 8:e1002720PubMedCrossRefGoogle Scholar
  26. Guttman M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227PubMedCrossRefGoogle Scholar
  27. Guttman M et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–306PubMedCrossRefGoogle Scholar
  28. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346PubMedCrossRefGoogle Scholar
  29. Haerty W, Ponting CP (2013) Mutations within lncRNAs are effectively selected against in fruitfly but not human. Genome Biol 14:R49PubMedCrossRefGoogle Scholar
  30. Hangauer MJ, Vaughn IW, MacManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9, e1003569Google Scholar
  31. Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79PubMedCrossRefGoogle Scholar
  32. Hilfiker A et al (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16:2054–2060PubMedCrossRefGoogle Scholar
  33. Hindorff LA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362–9367PubMedCrossRefGoogle Scholar
  34. Hogga I, Karch F (2002) Transcription through the iab-7 cis-regulatory domain of the bithorax complex interferes with maintenance of Polycomb-mediated silencing. Development 129:4915–4922PubMedGoogle Scholar
  35. Ilik et al (2013) Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell 51:156–173PubMedCrossRefGoogle Scholar
  36. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802PubMedCrossRefGoogle Scholar
  37. Jenny A et al (2006) A translation-independent role of oskar RNA in early Drosophila oogenesis. Development 133:2827–2833PubMedCrossRefGoogle Scholar
  38. Kapranov P et al (2005) Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res 15:987–997PubMedCrossRefGoogle Scholar
  39. Kapranov P et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488PubMedCrossRefGoogle Scholar
  40. Katayama S et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566PubMedCrossRefGoogle Scholar
  41. Kelley RL et al (1997) Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387:195–199PubMedCrossRefGoogle Scholar
  42. Khalil AM et al (2009) Many human large intergenic noncoding RNAs associate with chromatin modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672PubMedCrossRefGoogle Scholar
  43. Kloc M, Bilinski S, Dougherty MT (2007) Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three dimensional and ultrastructural analysis. Exp Cell Res 313:1639–e1651PubMedCrossRefGoogle Scholar
  44. Kornienko AE et al (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biology 11:59PubMedCrossRefGoogle Scholar
  45. Kretz M et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235PubMedCrossRefGoogle Scholar
  46. Krueger BJ et al (2010) The mechanism of release of P-TEFb and HEXIM1 from the 7SK snRNP by viral and cellular activators includes a conformational change in 7SK. PLoS ONE 5, e12335Google Scholar
  47. Kwek KY et al (2001) U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol 9:800–805Google Scholar
  48. Latos PA et al (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–1472PubMedCrossRefGoogle Scholar
  49. Lin MF, Jungreis I, Kellis M (2011) PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27:i275–i282PubMedCrossRefGoogle Scholar
  50. Lipshitz HD, Peattie DA, Hogness DS (1987) Novel transcripts from the ultrabithorax domain of the bithorax complex. Genes Dev 1:307–322PubMedCrossRefGoogle Scholar
  51. Magistri M et al (2012) Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet 28:389–396PubMedCrossRefGoogle Scholar
  52. Maenner S et al (2010) 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol 8:e1000276PubMedCrossRefGoogle Scholar
  53. Maenner S et al (2013) ATP-dependent roX RNA Remodeling by the Helicase maleless enables specific association of MSL proteins. Mol Cell 51:174–184PubMedCrossRefGoogle Scholar
  54. Mariner PD et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509PubMedCrossRefGoogle Scholar
  55. Markussen FH et al (1995) Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121:3723–3732PubMedGoogle Scholar
  56. Marques AC, Ponting CP (2009) Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness. Genome Biol 10:R124PubMedCrossRefGoogle Scholar
  57. Meller VH, Rattner BP (2002) The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J 21:1084–1091PubMedCrossRefGoogle Scholar
  58. MODencode Consortium (2010) Identification of functional elements and regulatory circuits by Drosophila MODencode. Science 330:1787–1797CrossRefGoogle Scholar
  59. Mondal T et al (2010) Characterization of the RNA content of chromatin. Genome Res 20:899–907PubMedCrossRefGoogle Scholar
  60. Mondal T, Kanduri C (2013) Maintenance of epigenetic information: A noncoding RNA Perspective. Chromosome Res. doi: 10.1007/s10577-013-9385-5
  61. Morra R et al (2011) Role of the ATPase/helicase maleless (MLE) in the assembly, targeting, spreading and function of the male-specific lethal (MSL) complex of Drosophila. Epigenetics Chromatin 4:6PubMedCrossRefGoogle Scholar
  62. Nakagawa S et al (2011) Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol 193:31–39PubMedCrossRefGoogle Scholar
  63. Nakagawa S et al (2012) Malat1 is not an essential component of nuclear speckles in mice. RNA 18:1487–1499PubMedCrossRefGoogle Scholar
  64. Ørom UA et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58PubMedCrossRefGoogle Scholar
  65. Pathak RU et al (2013) AAGAG repeat RNA is an essential component of nuclear matrix in Drosophila. RNA Biol 10:564–571PubMedCrossRefGoogle Scholar
  66. Petruk S et al (2006) Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127:1209–1221Google Scholar
  67. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565PubMedCrossRefGoogle Scholar
  68. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641PubMedCrossRefGoogle Scholar
  69. Ponting CP, Belgard TG (2010) Transcribed dark matter: meaning or myth? Hum Mol Genet 19:R162–R168PubMedCrossRefGoogle Scholar
  70. Rank G, Prestel M, Paro R (2002) Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch. Mol Cell Biol 22:8026–8034PubMedCrossRefGoogle Scholar
  71. Rinn JL et al (2003) The transcriptional activity of human Chromosome 22. Genes Dev 17:529–540PubMedCrossRefGoogle Scholar
  72. Rinn JL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX Loci by noncoding RNAs. Cell 129:1311–1323Google Scholar
  73. Ravasi T et al (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16:11–19PubMedCrossRefGoogle Scholar
  74. Saunders A et al (2013) Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev 27:1146–1158PubMedCrossRefGoogle Scholar
  75. Schmitt S, Prestel M, Paro R (2005) Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev 19:697–708PubMedCrossRefGoogle Scholar
  76. Schorderet P, Duboule D (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet 7:e1002071PubMedCrossRefGoogle Scholar
  77. Stuckenholz C, Meller VH, Kuroda MI (2003) Functional redundancy within roX1, a noncoding RNA involved in dosage compensation in Drosophila melanogaster. Genetics 164:1003–1014PubMedGoogle Scholar
  78. Straub T et al (2008) The chromosomal high-affinity binding sites for the drosophila dosage compensation complex. PLoS Genet 4:e1000302PubMedCrossRefGoogle Scholar
  79. Tang et al (2013) Long noncoding RNAs-related diseases, cancers, and drugs. Scientific World Journal 2013:943539PubMedGoogle Scholar
  80. Ulitsky et al (2011) Conserved function of lincRNAs in vertebrate embryonic development despite. Rapid Sequence Evolution Cell 147:1537–1550Google Scholar
  81. Wang X et al (2007) Transcription elongation controls cell fate specification in the Drosophila embryo. Genes Dev 21:1031–1036PubMedCrossRefGoogle Scholar
  82. Wang KC et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124PubMedCrossRefGoogle Scholar
  83. Wilusz JE, Freier SM, Spector DL (2008) 3′ end processing of a long nuclear retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932PubMedCrossRefGoogle Scholar
  84. Wu L et al (2011) The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol Cell 43:132–144PubMedCrossRefGoogle Scholar
  85. Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci U S A 106:5569–5574PubMedCrossRefGoogle Scholar
  86. Yakovchuk P, Goodrich JA, Kugel JF (2011) B2 RNA represses TFIIH phosphorylation of RNA polymerase II. Transcription 2:45–49PubMedCrossRefGoogle Scholar
  87. Yin QF et al (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48:219–230PubMedCrossRefGoogle Scholar
  88. Yoo EJ, Cooke NE, Liebhaber SA (2012) An RNA-independent linkage of noncoding transcription to long-range enhancer function. Mol Cell Biol 32:2020–2029PubMedCrossRefGoogle Scholar
  89. Young RS et al (2012) Identification and properties of 1119 lincRNA loci in the Drosophila melanogaster genome. Genome Biol Evol 4:427–442PubMedCrossRefGoogle Scholar
  90. Zeitlinger J et al (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39:1512–1516PubMedCrossRefGoogle Scholar
  91. Zhang J et al (1998) The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94:515–524PubMedCrossRefGoogle Scholar
  92. Zhang B et al (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2:111–123PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeUSA

Personalised recommendations