Chromosome Research

, Volume 21, Issue 4, pp 383–392 | Cite as

A phylogenetic analysis using multidirectional chromosome painting of three species (Uroderma magnirostrum, U. bilobatum and Artibeus obscurus) of subfamily Stenodermatinae (Chiroptera-Phyllostomidae)

  • J. C. PieczarkaEmail author
  • A. J. B. Gomes
  • C. Y. Nagamachi
  • D. C. C. Rocha
  • J. D. Rissino
  • P. C. M. O’Brien
  • F. Yang
  • M. A. Ferguson-Smith


The species of genera Uroderma and Artibeus are medium-sized bats belonging to the family Phyllostomidae and subfamily Stenodermatinae (Mammalia, Chiroptera) from South America. They have a wide distribution in the Neotropical region, with two currently recognized species in Uroderma and approximately 20 species in Artibeus. These two genera have different rates of chromosome evolution, with Artibeus probably having retained the ancestral karyotype for the subfamily. We used whole chromosome paint probe sets from Carollia brevicauda and Phyllostomus hastatus on Uroderma magnirostrum, Uroderma bilobatum, and Artibeus obscurus. With the aim of testing the previous phylogenies of these bats using cytogenetics, we compared these results with published painting maps on Phyllostomidae. The genome-wide comparative maps based on chromosome painting and chromosome banding reveal the chromosome forms that characterize each taxonomic level within the Phyllostomidae and show the chromosome evolution of this family. Based on this, we are able to suggest an ancestral karyotype for Phyllostomidae. Our cladistic analysis is an independent confirmation using multidirectional chromosome painting of the previous Phyllostomidae phylogenies.

Key words

Uroderma Artibeus Chromosomal evolution Biodiversity FISH cladistic 



Artibeus cinereus


Artibeus obscurus


Carollia brevicauda


Diphylla ecaudata


Desmodus rotundus


Diaemus youngi


Fluorescence in situ hybridization


Phylogenetic analysis using parsimony


Phyllostomus hastatus


Saline Sodium Citrate


Tree bisection reconnection branch swapping


Uroderma bilobatum


Uroderma magnirostrum



The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Fundação de Amparo à Pesquisa do Estado do Pará for financial support (Edital BIONORTE—Proc 552032/20120-7 and Edital VALE—Proc 2010/110447) and the Wellcome Trust for a grant to M.A. Ferguson-Smith. Sample collection was authorized by Instituto Brasileiro de Meio Ambiente e dos Recursos Nacionais Renováveis. We also thank the reviewers of the suggestions, especially the one related to the heterochromatin and the non-silencing of the autosome part of the Neo-X.

Supplementary material

10577_2013_9365_MOESM1_ESM.doc (99 kb)
ESM 1 (DOC 99 kb)


  1. Agnarsson I, Miller JA (2008) Is ACCTRAN better than DELTRAN? Cladistics 24:1–7CrossRefGoogle Scholar
  2. Armada JL, Silva CS, Canella-Canavez F (1996) An improved procedure to obtain chromosome preparations of bats. Rev Univ Rural Série Ciências da Vida (Rio de Janeiro) 18:73–75Google Scholar
  3. Baker RJ (1967) Karyotypes of bats of the family Phyllostomatidae and their taxonomic implications. Southwest Natur 12:407–428CrossRefGoogle Scholar
  4. Baker RJ, Atchley WR, McDaniel VR (1972) Karyology and morphometrics of Peters’ tent-making bat, Uroderma bilobatum Peters (Chiroptera, Phyllostomidae). Syst Zool 21(4):414–429CrossRefGoogle Scholar
  5. Baker RJ, Bass RA, Johnson A (1979) Evolutionary implications of chromosomal homology in four genera of stenodermine bats (Phyllostomatidae: Chiroptera). Evolution 33(1):220–226CrossRefGoogle Scholar
  6. Baker RJ, Hood CS, Honeycutt RL (1989) Phylogenetic relationships and classification of the higher categories of the new world bat family Phyllostomidae. Syst Zool 38(3):228–238CrossRefGoogle Scholar
  7. Baker RJ, Porter CA, Patton JC, Van Den Bussche RA (2000) Systematics of bats of the family Phyllostomidae based on RAG2 DNA sequences. Occas Pap Mus Texas Tech Univ 202:1–16Google Scholar
  8. Baker RJ, Hoofer SR, Porter CA, Van Den Bussche RA (2003a) Diversification among New-World leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence. Occas Pap Mus Texas Tech Univ 230:1–32Google Scholar
  9. Baker RJ, Hamilton M, Parish DA (2003b) Preparation of mammalian chromosomes under field conditions. Occas Pap Mus Texas Tech Univ 228:1–8Google Scholar
  10. Carstens BC, Lundrigan BL, Myers P (2002) A phylogeny of the neotropical nectar-feeding bats (Chiroptera: Phyllostomidae) based on morphological and molecular data. J Mamm Evol 9(1/2):23–53CrossRefGoogle Scholar
  11. Datzmann T, von Helversen O, Mayer F (2010) Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evol Biol 10:165PubMedCrossRefGoogle Scholar
  12. Dobigny G, Ozouf-Costaz C, Bonillo C, Volouev V (2004) Viability of X-autosome translocations in mammals: an epigenomic hypothesis from a rodent case-study. Chromosoma 113(1):34–41PubMedCrossRefGoogle Scholar
  13. Gardner AL (2007) Mammals of South America. University of Chicago Press, Chicago, pp 1–690Google Scholar
  14. Gomes AJB, Nagamachi CY, Rodrigues LRR, Farias SG, Rissino JD, Pieczarka JC (2012) Karyotypic variation in Rhinophylla pumilio Peters, 1865 and comparative analysis with representatives of two subfamilies of Phyllostomidae (Chiroptera). Comp Cytogenet 6(2):213–225CrossRefGoogle Scholar
  15. Moratelli R, Andrade CM, Armada JLA (2002) A technique to obtain fibroblast cells from skin biopsies of living bats (Chiroptera) for cytogenetic studies. Genet Mol Res 1(2):128–130PubMedGoogle Scholar
  16. Noronha RCR, Nagamachi CY, Pieczarka JC, Marques-Aguiar S, Assis MFL, Barros RMS (2004) Meiotic analyses of the sex chromosomes in Carolliinae-Phyllostomidae (Chiroptera): NOR separates the XY1Y2 into two independent parts. Caryologia (Firenze) 57:1–9CrossRefGoogle Scholar
  17. Noronha RCR, Nagamachi CY, O’Brien PCM, Ferguson-Smith MA, Pieczarka JC (2010) Meiotic analysis of XX/XY and neo-XX/XY sex chromosomes in Phyllostomidae by cross-species chromosome painting revealing a common chromosome 15-XY rearrangement in Stenodermatinae. Chromosom Res 18:667–676CrossRefGoogle Scholar
  18. Pieczarka JC, Nagamachi CY, O’Brien PCM et al (2005) Reciprocal chromosome painting between two South American bats: Carollia brevicauda and Phyllostomus hastatus (Phyllostomidae, Chiroptera). Chromosom Res 13:339–347CrossRefGoogle Scholar
  19. Redondo RAF, Brina LPS, Silva RFS, Ditchfield AD, Santos FR (2008) Molecular systematics of the genus Artibeus (Chiroptera: Phyllostomidae). Mol Phylogenet Evol 49:44–58PubMedCrossRefGoogle Scholar
  20. Ribeiro NAB, Nagamachi CY, Pieczarka JC et al (2003) Cytogenetic analysis in species of the subfamily Glossophaginae (Phyllostomidae-Chiroptera) supports a polyphyletic origin. Caryologia (Firenze) 56:85–95CrossRefGoogle Scholar
  21. Rodrigues LRR, Barros RMS, Assis MFL, Marques-Aguiar S, Pieczarka JC, Nagamachi CY (2000) Chromosome comparison between two species of Phyllostomus (Chiroptera-Phyllostomidae) from Brazilian Amazonia, with some phylogenetic insights. Genet Mol Biol 23:595–599CrossRefGoogle Scholar
  22. Rodrigues LRR, Barros RMS, Marques-Aguiar S, Assis MFL, Pieczarka JC, Nagamachi CY (2003) Comparative cytogenetics of two phyllostomids bats. A new hypothesis to the origin of the rearranged X chromosome from Artibeus lituratus. Caryologia (Firenze) 56:413–419CrossRefGoogle Scholar
  23. Silva AM, Marques-Aguiar S, Barros RMS, Nagamachi CY, Pieczarka JC (2005) Comparative cytogenetic analysis in the species Uroderma magnirostrum and U. bilobatum (cytotype 2n = 42) (Phyllostomidae, Sternodermatinae) in the Brazilian Amazon. Genet Mol Biol 28:248–253CrossRefGoogle Scholar
  24. Sotero-Caio CG, Pieczarka JC, Nagamachi CY et al (2011) Chromosomal homologies among vampire bats revealed by chromosome painting (Phyllostomidae, Chiroptera). Cytogenet Genome Res 132:156–164PubMedCrossRefGoogle Scholar
  25. Swofford D (1998) PAUP—phylogenetic analysis using parsimony, version 4.10 beta. Sinauer, SuderlandGoogle Scholar
  26. Van Den Bussche RA (1992) Restriction-site variation and molecular systematics of New World leaf-nosed bats. J Mammal 73:29–42CrossRefGoogle Scholar
  27. Wetterer AL, Rockman MV, Simmons NB (2000) Phylogeny of Phyllostomid bats (Mammalia: Chirpotera): data from diverse morphological systems, sex chromosomes and restriction sites. Bull Am Mus Nat Hist 248:1–200CrossRefGoogle Scholar
  28. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. C. Pieczarka
    • 1
    • 2
    • 7
    Email author
  • A. J. B. Gomes
    • 1
    • 3
  • C. Y. Nagamachi
    • 1
    • 2
  • D. C. C. Rocha
    • 4
  • J. D. Rissino
    • 1
  • P. C. M. O’Brien
    • 5
  • F. Yang
    • 6
  • M. A. Ferguson-Smith
    • 5
  1. 1.Laboratório de Citogenética, ICBUFPABelemBrazil
  2. 2.CNPqBrasiliaBrazil
  3. 3.CNPq Doctoral Scholarship in Genetics and Molecular BiologyBrasiliaBrazil
  4. 4.Instituto Evandro ChagasBelémBrazil
  5. 5.Cambridge Resource Centre for Comparative GenomicsUniversity of CambridgeCambridgeUK
  6. 6.Cytogenetics FacilityWellcome Trust Sanger InstituteHinxtonUK
  7. 7.Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil

Personalised recommendations