Chromosome Research

, Volume 21, Issue 4, pp 375–381 | Cite as

Tobacco karyotyping by accurate centromere identification and novel repetitive DNA localization

  • Fukashi Shibata
  • Kiyotaka Nagaki
  • Etsuko Yokota
  • Minoru Murata


Tobacco (Nicotiana tabacum) is an amphidiploid species (2n = 4x = 48, genome constitution SSTT) derived from a natural hybrid between Nicotiana sylvestris (2n = 2x = 24, SS) and Nicotiana tomentosiformis (2n = 2x = 24, TT). Genomic in situ hybridization (GISH), using the genomic DNA from these ancestral species as probes, revealed the chromosomal origins (S or T) and the occurrence of intergenomic translocations in N. tabacum. Fluorescence in situ hybridization (FISH) was also used to distinguish between chromosomes. However, the use of repetitive DNA sequences as probes for FISH analysis is limited by an inability to identify all chromosomes. In addition to this limitation, the occurrence of chromosomal tertiary constrictions can easily lead to the misclassification of chromosomes. To overcome these issues, immunostaining with anti-N. tabacum centromere-specific histone H3 antibody was carried out to determine the centromere position of each chromosome, followed by FISH analysis with ten distinct repetitive DNA probes. This approach allowed us to identify 22 of the 24 chromosome pairs in N. tabacum and revealed novel intergenomic chromosome rearrangements and B-chromosome-like minichromosomes. Hence, the combination of immunostaining with FISH and GISH is critical to accurately karyotype tobacco.


Nicotiana tabacum fluorescence in situ hybridization (FISH) genome in situ hybridization (GISH) immunostaining centromere-specific histone H3 (CENH3) 



Centromere-specific histone H3






Fluorescence in situ hybridization


Genomic in situ hybridization


Nicotiana tabacum centromere-specific histone H3


Phosphate-buffered saline



This work was supported by the program for the promotion of basic and applied researches for innovations in bio-oriented industry (BRAIN).

Supplementary material

10577_2013_9363_Fig3_ESM.jpg (24 kb)
Fig. S1

A GISH image of N. tabacum cv. Petit Havana SR1. A mitotic prometaphase cell labeled by GISH, using genomic DNA from N. tomentosiformis (green) and N. sylvestris (red). Scale bar, 2 μm. (JPEG 24 kb)

10577_2013_9363_MOESM1_ESM.tif (1.5 mb)
High-resolution image (TIFF 1,560 kb)
10577_2013_9363_MOESM2_ESM.doc (146 kb)
Table S1 (DOC 146 kb)


  1. Fulnecek J, Lim KY, Leitch AR, Kovarik A, Matyasek R (2002) Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88:19–25PubMedCrossRefGoogle Scholar
  2. Gazdova B, Siroky J, Fajkus J, Brzobohaty B, Kenton A, Parokonny A, Heslop-Harrison JS, Palme K, Bezdek M (1995) Characterization of a new family of tobacco highly repetitive DNA, GRS, specific for the Nicotiana tomentosiformis genomic component. Chromosom Res 3:245–254CrossRefGoogle Scholar
  3. Goodspeed TH (1954) The genus Nicotiana. Chronica Botanica Co., WalthamGoogle Scholar
  4. Hizume M (1993) Chromosomal localization of 5S rRNA genes in Vicia faba and Crepis capillaris. Cytologica (Tokyo) 58:417–421CrossRefGoogle Scholar
  5. Jakowitsch J, Papp I, Matzke MA, Matzke AJ (1998) Identification of a new family of highly repetitive DNA, NTS9, that is located predominantly on the S9 chromosome of tobacco. Chromosome Res 6:649–651PubMedCrossRefGoogle Scholar
  6. Jones RN, Rees H (1982) B chromosomes. Academic, LondonGoogle Scholar
  7. Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169PubMedCrossRefGoogle Scholar
  8. Kitamura S, Tanaka A, Inoue M (2005) Genomic relationships among Nicotiana species with different ploidy levels revealed by 5S rDNA spacer sequences and FISH/GISH. Genes Genet Sys 80:251–260CrossRefGoogle Scholar
  9. Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon 53:73–82CrossRefGoogle Scholar
  10. Koukalova B, Reich J, Matyasek R, Kuhrova V, Bezdek M (1989) A BamHI family of highly repeated DNA sequences of Nicotiana tabacum. Theor Appl Genet 78:77–80CrossRefGoogle Scholar
  11. Lim KY, Matyasek R, Lichtenstein CP, Leitch AR (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258PubMedCrossRefGoogle Scholar
  12. Lim KY, Skalicka K, Koukalova B, Volkov RA, Matyasek R, Hemleben V, Leitch AR, Kovarik A (2004) Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics 166:1935–1946PubMedCrossRefGoogle Scholar
  13. Lim KY, Souckova-Skalicka K, Sarasan V, Clarkson JJ, Chase MW, Kovarik A, Leitch AR (2006) A genetic appraisal of a new synthetic Nicotiana tabacum (Solanaceae) and the Kostoff synthetic tobacco. Amer J Bot 93:875–883CrossRefGoogle Scholar
  14. Matyášek R, Gazdova B, Fajkus J, Bezdek M (1997) NTRS, a new family of highly repetitive DNAs specific for the T1 chromosome of tobacco. Chromosoma 106:369–379PubMedCrossRefGoogle Scholar
  15. Moscone EA, Matzke MA, Matzke AJ (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236CrossRefGoogle Scholar
  16. Murata M, Yokota E, Shibata F, Kashihara K (2008) Functional analysis of the Arabidopsis centromere by T-DNA insertion-induced centromere breakage. Proc Natl Acad Sci USA 105:7511–7516PubMedCrossRefGoogle Scholar
  17. Nagaki K, Kashihara K, Murata M (2009) A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma 118:249–257PubMedCrossRefGoogle Scholar
  18. Nagaki K, Shibata F, Kanatani A, Kashihara K, Murata M (2012) Isolation of centromeric-tandem repetitive DNA sequences by chromatin affinity purification using a HaloTag7-fused centromere-specific histone H3 in tobacco. Plant Cell Rep 31:771–779PubMedCrossRefGoogle Scholar
  19. Nagaki K, Shibata F, Suzuki G, Kanatani A, Ozaki S, Hironaka A, Kashihara K, Murata M (2011) Coexistence of NtCENH3 and two retrotransposons in tobacco centromeres. Chromosome Res 19:591–605PubMedCrossRefGoogle Scholar
  20. Shibata F, Hizume M (2002) The identification and analysis of the sequences that allow the detection of Allium cepa chromosomes by GISH in the allodiploid A. wakegi. Chromosoma 111:184–191PubMedCrossRefGoogle Scholar
  21. Shibata F, Murata M (2004) Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117:2963–2970PubMedCrossRefGoogle Scholar
  22. Suzuki K, Yamagiwa Y, Matsui T, Yoshida K (1994) Restriction enzyme-resistant high molecular weight telomeric DNA fragments in tobacco. DNA Res 1:129–138PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fukashi Shibata
    • 1
  • Kiyotaka Nagaki
    • 1
  • Etsuko Yokota
    • 1
  • Minoru Murata
    • 1
  1. 1.Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan

Personalised recommendations