Chromosome Research

, Volume 21, Issue 1, pp 49–62 | Cite as

Hypermorphic expression of centromeric retroelement-encoded small RNAs impairs CENP-A loading

  • Dawn M. Carone
  • Chu Zhang
  • Laura E. Hall
  • Craig Obergfell
  • Benjamin R. Carone
  • Michael J. O’Neill
  • Rachel J. O’Neill
Article

Abstract

The proper functioning of centromeres requires a complex cascade of epigenetic events involving chromatin and kinetochore assembly; however, the precise mechanism by which this cascade proceeds is unknown. The pivotal event during kinetochore formation is the “loading,” or deposition, of CENP-A. This histone H3 variant is specific to centromeres and replaces conventional H3 in centromeric chromatin. Failure to load CENP-A into mammalian centromeres in late telophase/early G1 of the cell cycle leads to malsegregation and cell division defects in subsequent cell cycles. Mounting evidence supports the hypothesis that an RNA component is involved, although how RNAs participate in centromere formation in mammals has remained unknown. Using the marsupial model, the tammar wallaby, we show that centromeric retroelements produce small RNAs and that hypermorphic expression of these centromeric small RNAs results in disruption of CENP-A localization. We propose that tight regulation of the processing of this new class of small RNAs, crasiRNAs, is an integral component of the epigenetic framework necessary for centromere establishment.

Keywords

Centromere CENP-A Centromeric retroement Centromeric transcription Small RNA crasiRNA 

Abbreviations

CENP

Centromere protein

siRNA

Small interfering RNA

RNAi

RNA interference

dsRNA

Double-stranded RNA

KERV

Kangaroo endogenous retrovirus

kLTR

KERV long terminal repeat

crasiRNA

Centromere repeat-associated short interacting RNA

H3

Histone 3

miRNA

MicroRNA

piRNA

Piwi interacting RNA

IVT

In vitro transcription

IC

Immunochemistry

FITC

Fluorescein isothiocyanate

N.A.

Numerical aperture

FACS

Fluorescence activated cell sorting

RISC

RNA-induced silencing complex

LNA

Locked nucleic acid

miSAT

Minor satellite

LINE

Long interspersed nuclear element

HAC

Human artificial chromosome

HJURP

Holliday junction recognition protein

ACA

Anti-centromere antibody

PKR

Protein kinase R

Supplementary material

10577_2013_9337_MOESM1_ESM.doc (53 kb)
ESM 1(DOC 53 kb)

References

  1. Allshire R, Karpen G (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9:923–937PubMedCrossRefGoogle Scholar
  2. Alonso A, Mahmood R, Li S, Cheung F, Yoda K, Warburton PE (2003) Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 12:2711–2721PubMedCrossRefGoogle Scholar
  3. Alonso A, Fritz B, Hasson D, Abrusan G, Cheung F, Yoda K, Radlwimmer B, Ladurner AG, Warburton PE (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8:R148PubMedCrossRefGoogle Scholar
  4. Alonso A, Hasson D, Cheung F, Warburton PE (2010) A paucity of heterochromatin at functional human neocentromeres. Epigenetics Chromatin 3:6PubMedCrossRefGoogle Scholar
  5. Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789PubMedCrossRefGoogle Scholar
  6. Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LE, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340PubMedCrossRefGoogle Scholar
  7. Bergmann JH, Jakubsche JN, Martins NM, Kagansky A, Nakano M, Kimura H, Kelly DA, Turner BM, Masumoto H, Larionov V et al (2012) Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J Cell Sci 125:411–421PubMedCrossRefGoogle Scholar
  8. Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci U S A 103:8709–8714PubMedCrossRefGoogle Scholar
  9. Brown JD, Strbuncelj M, Giardina C, O'Neill RJ (2002) Interspecific hybridization induced amplification of Mdm2 on double minutes in a Mus hybrid. Cytogenet Genome Res 98:184–188PubMedCrossRefGoogle Scholar
  10. Caplen NJ, Fleenor J, Fire A, Morgan RA (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252:95–105PubMedCrossRefGoogle Scholar
  11. Carone DM, Longo MS, Ferreri GC, Hall L, Harris M, Shook N, Bulazel KV, Carone BR, Obergfell C, O'Neill MJ et al (2009) A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 118:113–125PubMedCrossRefGoogle Scholar
  12. Carroll CW, Milks KJ, Straight AF (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189:1143–1155PubMedCrossRefGoogle Scholar
  13. Chan FL, Wong LH (2012) Transcription in the maintenance of centromere chromatin identity. Nucleic Acids Res 40(22)Google Scholar
  14. Chan FL, Marshall OJ, Saffery R, Won Kim B, Earle E, Choo KHA, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci 109:1979–1984PubMedCrossRefGoogle Scholar
  15. Choo K (1997) The centromere. Oxford University Press, OxfordGoogle Scholar
  16. Chueh AC, Northrop EL, Brettingham-Moore KH, Choo KH, Wong LH (2009) LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet 5:e1000354PubMedCrossRefGoogle Scholar
  17. Clarke PA, Mathews MB (1995) Interactions between the double-stranded RNA binding motif and RNA: definition of the binding site for the interferon-induced protein kinase DAI (PKR) on adenovirus VA RNA. RNA 1:7–20PubMedGoogle Scholar
  18. Clemens MJ (2001) Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. Prog Mol Subcell Biol 27:57–89PubMedGoogle Scholar
  19. du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KH (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16:144–153PubMedCrossRefGoogle Scholar
  20. Du Y, Topp CN, Dawe RK (2010) DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet 6:e1000835PubMedCrossRefGoogle Scholar
  21. Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, Nakamura Y, Daigo Y, Nakatani Y, Almouzni-Pettinotti G (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137:485–497PubMedCrossRefGoogle Scholar
  22. Erhardt S, Mellone BG, Betts CM, Zhang W, Karpen G, Straight AF (2008) Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J Cell Biol 183:805–818PubMedCrossRefGoogle Scholar
  23. Eymery A, Horard B, El Atifi-Borel M, Fourel G, Berger F, Vitte AL, Van den Broeck A, Brambilla E, Fournier A, Callanan M et al (2009) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 37:6340–6354PubMedCrossRefGoogle Scholar
  24. Ferreri GC, Liscinsky DM, Mack JA, Eldridge MD, O'Neill RJ (2005) Retention of latent centromeres in the mammalian genome. J Hered 96:217–224PubMedCrossRefGoogle Scholar
  25. Ferreri GC, Brown JD, Obergfell C, Jue N, Finn CE, O'Neill MJ, O'Neill RJ (2011) Recent amplification of the kangaroo endogenous retrovirus, KERV, limited to the centromere. J Virol 85:4761–4771PubMedCrossRefGoogle Scholar
  26. Ferri F, Bouzinba-Segard H, Velasco G, Hube F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37:5071–5080PubMedCrossRefGoogle Scholar
  27. Fishel B, Amstutz H, Baum M, Carbon J, Clarke L (1988) Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 8:754–763PubMedGoogle Scholar
  28. Folco HD, Pidoux AL, Urano T, Allshire RC (2008) Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319:94–97PubMedCrossRefGoogle Scholar
  29. Foltz DR, Jansen LE, Bailey AO, Yates JR 3rd, Bassett EA, Wood S, Black BE, Cleveland DW (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137:472–484PubMedCrossRefGoogle Scholar
  30. Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell 12:17–30PubMedCrossRefGoogle Scholar
  31. Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–791PubMedCrossRefGoogle Scholar
  32. Gan L, Anton KE, Masterson BA, Vincent VA, Ye S, Gonzalez-Zulueta M (2002) Specific interference with gene expression and gene function mediated by long dsRNA in neural cells. J Neurosci Methods 121:151–157PubMedCrossRefGoogle Scholar
  33. Gent JI, Dawe RK (2012) RNA as a structural and regulatory component of the centromere. Annu Rev Genet 46:443–53PubMedCrossRefGoogle Scholar
  34. Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N (2007) Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316:417–421PubMedCrossRefGoogle Scholar
  35. Hall LE, Mitchell SE, O'Neill RJ (2012) Pericentric and centromeric transcription: a perfect balance required. Chromosome Res 20:535–546PubMedCrossRefGoogle Scholar
  36. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102PubMedCrossRefGoogle Scholar
  37. Hsieh CL, Lin CL, Liu H, Chang YJ, Shih CJ, Zhong CZ, Lee SC, Tan BC (2011) WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway. Nucleic Acids Res 39(10):4048–62PubMedCrossRefGoogle Scholar
  38. Jansen L, Black B, Foltz D, Cleveland D (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176:795–805PubMedCrossRefGoogle Scholar
  39. Jin W, Lamb JC, Vega JM, Dawe RK, Birchler JA, Jiang J (2005) Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 17:1412–1423PubMedCrossRefGoogle Scholar
  40. Kanellopoulou C, Muljo S, Kung A, Ganesan S, Drapkin R, Jenuwein T, Livingston D, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501PubMedCrossRefGoogle Scholar
  41. Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13:489–496PubMedCrossRefGoogle Scholar
  42. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139PubMedCrossRefGoogle Scholar
  43. Lee HR, Neumann P, Macas J, Jiang J (2006) Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol 23:2505–2520PubMedCrossRefGoogle Scholar
  44. Lindsay J, Carone D, Brown J, Hall L, Qureshi S, Mitchell S, Jannetty N, Hannon G, Renfree M, Pask A et al (2012) Unique small RNA signatures uncovered in the tammar wallaby genome. BMC Genomics (in press)Google Scholar
  45. Lo AW, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KH (2001) A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 11:448–457PubMedCrossRefGoogle Scholar
  46. May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:e79PubMedCrossRefGoogle Scholar
  47. Mellone BG, Zhang W, Karpen GH (2009) Frodos found: behold the CENP-a "Ring" bearers. Cell 137:409–412PubMedCrossRefGoogle Scholar
  48. Metcalfe CJ, Bulazel KV, Ferreri GC, Schroeder-Reiter E, Wanner G, Rens W, Obergfell C, Eldridge MD, O'Neill RJ (2007) Genomic instability within centromeres of interspecific marsupial hybrids. Genetics 177:2507–2517PubMedCrossRefGoogle Scholar
  49. Murchison E, Partridge J, Tam O, Cheloufi S, Hannon G (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 102:12135–12140PubMedCrossRefGoogle Scholar
  50. Nakano M, Okamoto Y, Ohzeki J, Masumoto H (2003) Epigenetic assembly of centromeric chromatin at ectopic alpha-satellite sites on human chromosomes. J Cell Sci 116:4021–4034PubMedCrossRefGoogle Scholar
  51. Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, Kandels-Lewis S, Larionov V, Earnshaw WC, Masumoto H (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14:507–522PubMedCrossRefGoogle Scholar
  52. Neumann P, Yan H, Jiang J (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176:749–761PubMedCrossRefGoogle Scholar
  53. Okamoto Y, Nakano M, Ohzeki J, Larionov V, Masumoto H (2007) A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO J 26:1279–1291PubMedCrossRefGoogle Scholar
  54. O'Neill RJ, O'Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393:68–72PubMedCrossRefGoogle Scholar
  55. Paddison PJ, Caudy AA, Hannon GJ (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci U S A 99:1443–1448PubMedCrossRefGoogle Scholar
  56. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCrossRefGoogle Scholar
  57. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276PubMedCrossRefGoogle Scholar
  58. Raefski AS, O'Neill MJ (2005) Identification of a cluster of X-linked imprinted genes in mice. Nat Genet 37:620–624PubMedCrossRefGoogle Scholar
  59. Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T, Belov K, Rens W, Waters PD, Pharo EA, Shaw G et al (2011) Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 12:R81PubMedCrossRefGoogle Scholar
  60. Reyes-Turcu FE, Zhang K, Zofall M, Chen E, Grewal SIS (2011) Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat Struct Mol Biol 18(10):1132–1138PubMedCrossRefGoogle Scholar
  61. Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115PubMedCrossRefGoogle Scholar
  62. Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127:581–592PubMedCrossRefGoogle Scholar
  63. Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, Contino G, Deshpande V, Iafrate AJ, Letovsky S et al (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–596PubMedCrossRefGoogle Scholar
  64. Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci U S A 101:15986–15991PubMedCrossRefGoogle Scholar
  65. Valgardsdottir R, Chiodi I, Giordano M, Cobianchi F, Riva S, Biamonti G (2005) Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol Biol Cell 16:2597–2604PubMedCrossRefGoogle Scholar
  66. Volpe T, Kidner C, Hall I, Teng G, Grewal S, Martienssen R (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837PubMedCrossRefGoogle Scholar
  67. Volpe T, Schramke V, Hamilton G, White S, Teng G, Martienssen R, Allshire R (2003) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11:137–146PubMedCrossRefGoogle Scholar
  68. Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan BA, Stetten G, Gimelli G, Warburton D, Tyler-Smith C, Sullivan KF et al (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904PubMedCrossRefGoogle Scholar
  69. Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E et al (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160PubMedCrossRefGoogle Scholar
  70. Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH, Verma IM (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477:179–184PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Dawn M. Carone
    • 1
    • 2
  • Chu Zhang
    • 1
  • Laura E. Hall
    • 1
  • Craig Obergfell
    • 1
  • Benjamin R. Carone
    • 3
  • Michael J. O’Neill
    • 1
  • Rachel J. O’Neill
    • 1
  1. 1.Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUSA
  2. 2.Department of Cell and Developmental BiologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  3. 3.Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations