Advertisement

Chromosome Research

, Volume 21, Issue 1, pp 5–13 | Cite as

Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species

  • Li He
  • Jun Liu
  • Giovana A. Torres
  • Haiqin Zhang
  • Jiming Jiang
  • Conghua Xie
Article

Abstract

Interstitial telomeric repeats (ITRs) were reported in a number of animal and plant species. Most ITRs are organized as short tandem arrays and are likely evolutionary relics derived from chromosomal rearrangements and DNA repairs. However, megabase-sized ITR arrays were reported in Solanum species. Here, we report a fluorescence in situ hybridization (FISH) survey of ITRs in all representative diploid Solanum species, including potato, tomato, and eggplant. FISH revealed massive amplification of ITRs in the centromeric regions of chromosomes from the Solanum species containing the B and P genomes. A significant proportion of the ITR FISH signals was mapped within the primary constrictions of the pachytene chromosomes of Solanum pinnatisectum (B genome). In addition, some ITR sites overlapped with St49, a satellite repeat enriched in centromeric DNA sequences associated with CENH3 nucleosomes, in both A and B genome Solanum species. These results show that some ITR subfamilies have been amplified and invaded in the functional centromeres of chromosomes in Solanum species.

Keywords

interstitial telomeric repeats centromere potato Solanum fluorescence in situ hybridization 

Abbreviations

ITRs

Interstitial telomeric repeats

FISH

Fluorescence in situ hybridization

BAC

Bacterial artificial chromosome

DAPI

4′,6-Diamidino-2-phenylindole

Notes

Acknowledgments

We thank Dr. Christian Bachem, Wageningen University, the Netherlands, for providing the potato BAC clones. This work was supported by grant 2009CDA085 from the Natural Science Foundation of Hubei Province and grant 2006AA100107 from the National High-Tech Program of China to L.J., and by grant IOS1237969 from the National Science Foundation (USA) to J.J. G.A.T. was supported by a CAPES fellowship from the Brazilian Ministry of Education, Brazil.

References

  1. Abad JP, de Pablos B, Agudo M, Molina I, Giovinazzo G, Martin-Gallardo A, Villasante A (2004) Genomic and cytological analysis of the Y chromosome of Drosophila melanogaster: telomere-derived sequences at internal regions. Chromosoma 113:295–304PubMedCrossRefGoogle Scholar
  2. Alfenito MR, Birchler JA (1993) Molecular characterization of a maize B chromosome centric sequence. Genetics 135:589–597PubMedGoogle Scholar
  3. Azzalin CM, Nergadze SG, Giulotto E (2001) Human intrachromosomal telomeric-like repeats: sequence organization and mechanisms of origin. Chromosoma 110:75–82PubMedCrossRefGoogle Scholar
  4. Bolzan AD (2012) Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis 27:1–15PubMedCrossRefGoogle Scholar
  5. Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103PubMedGoogle Scholar
  6. Cohen Z, Bacharach E, Lavi S (2006) Mouse major satellite DNA is prone to eccDNA formation via DNA ligase IV-dependent pathway. Oncogene 25:4515–4524PubMedCrossRefGoogle Scholar
  7. Cohen S, Houben A, Segal D (2008) Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J 53:1027–1034PubMedCrossRefGoogle Scholar
  8. Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, Jiang J (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007CrossRefGoogle Scholar
  9. Gong ZY, Wu YF, Koblížková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang WL, Novák P, Buell CR, Macas J, Jiang JM (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574Google Scholar
  10. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102PubMedCrossRefGoogle Scholar
  11. Iovene M, Wielgus SM, Simon PW, Buell CR, Jiang JM (2008) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180:1307–1317PubMedCrossRefGoogle Scholar
  12. Jin WW, Lamb JC, Vega JM, Dawe RK, Birchler JA, Jiang JM (2005) Molecular and functional dissection of the maize B centromere. Plant Cell 17:1412–1423PubMedCrossRefGoogle Scholar
  13. Kilian A, Kudrna D, Kleinhofs A (1999) Genetic and molecular characterization of barley chromosome telomeres. Genome 42:412–419CrossRefGoogle Scholar
  14. Kocsis E, Trus BL, Steer CJ, Bisher ME, Steven AC (1991) Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J Struct Biol 107:6–14PubMedCrossRefGoogle Scholar
  15. Lin KW, Yan J (2008) Endings in the middle: current knowledge of interstitial telomeric sequences. Mutat Res 658:95–110PubMedCrossRefGoogle Scholar
  16. Lou QF, Iovene M, Spooner DM, Buell CR, Jiang JM (2010) Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma 119:435–442PubMedCrossRefGoogle Scholar
  17. Mendez-Lago M, Wild J, Whitehead SL, Tracey A, de Pablos B, Rogers J, Szybalski W, Villasante A (2009) Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere. Nucleic Acids Res 37:2264–2273PubMedCrossRefGoogle Scholar
  18. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626PubMedCrossRefGoogle Scholar
  19. Nagaki K, Cheng ZK, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang JM (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145PubMedCrossRefGoogle Scholar
  20. Navratilova A, Koblizkova A, Macas J (2008) Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol 8:90PubMedCrossRefGoogle Scholar
  21. Peters SA, Bargsten JW, Szinay D, van de Belt J, Visser RG, Bai Y, de Jong H (2012) Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper. Plant J 71:602–614PubMedCrossRefGoogle Scholar
  22. Presting GG, Frary A, Pillen K, Tanksley SD (1996) Telomere-homologous sequences occur near the centromeres of many tomato chromosomes. Mol Gen Genet 251:526–531PubMedCrossRefGoogle Scholar
  23. Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136PubMedCrossRefGoogle Scholar
  24. Ruiz-Herrera A, Nergadze SG, Santagostino M, Giulotto E (2008) Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet Genome Res 122:219–228PubMedCrossRefGoogle Scholar
  25. Schubert I, Rieger R, Fuchs J (1995) Alteration of basic chromosome number by fusion–fission cycles. Genome 38:1289–1292PubMedCrossRefGoogle Scholar
  26. Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535PubMedCrossRefGoogle Scholar
  27. Tang XM, Szinay D, Lang C, Ramanna MS, van der Vossen EAG, Datema E, Lankhorst RK, de Boer J, Peters SA, Bachem C, Stiekema W, Visser RGF, de Jong H, Bai YL (2008) Cross-species bacterial artificial chromosome–fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics 180:1319–1328PubMedCrossRefGoogle Scholar
  28. Tang XM, de Boer JM, van Eck HJ, Bachem C, Visser RGF, de Jong H (2009) Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC–FISH technology. Chromosome Res 17:899–915PubMedCrossRefGoogle Scholar
  29. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  30. Tek AL, Jiang JM (2004) The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomere-similar sequence. Chromosoma 113:77–83PubMedCrossRefGoogle Scholar
  31. The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195CrossRefGoogle Scholar
  32. The Tomato Genome Sequencing Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  33. Uchida W, Matsunaga S, Sugiyama R, Kawano S (2002) Interstitial telomere-like repeats in the Arabidopsis thaliana genome. Genes Genet Syst 77:63–67PubMedCrossRefGoogle Scholar
  34. Wu FN, Tanksley SD (2010) Chromosomal evolution in the plant family Solanaceae. BMC Genomics 11:182PubMedCrossRefGoogle Scholar
  35. Wu FN, Eannetta NT, Xu YM, Tanksley SD (2009) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935PubMedCrossRefGoogle Scholar
  36. Yan HH, Talbert PB, Lee HR, Jett J, Henikoff S, Chen F, Jiang JM (2008) Intergenic locations of rice centromeric chromatin. PLoS Biol 6:2563–2575CrossRefGoogle Scholar
  37. Zhu W, Ouyang S, Iovene M, O'Brien K, Vuong H, Jiang J, Buell CR (2008) Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition. BMC Genomics 9:286PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Li He
    • 1
  • Jun Liu
    • 1
  • Giovana A. Torres
    • 2
    • 3
  • Haiqin Zhang
    • 2
    • 4
  • Jiming Jiang
    • 2
  • Conghua Xie
    • 1
  1. 1.Key Laboratory of Horticultural Plant Biology, Ministry of Education; National Center for Vegetable Improvement; Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanPeople’s Republic of China
  2. 2.Department of HorticultureUniversity of WisconsinMadisonUSA
  3. 3.Departmento de BiologiaUniversidade Federal de LavrasLavrasBrazil
  4. 4.Triticeae Research InstituteSichuan Agricultural UniversityWenjiangPeople’s Republic of China

Personalised recommendations