Chromosome Research

, Volume 20, Issue 6, pp 735–752 | Cite as

The radial nuclear positioning of genes correlates with features of megabase-sized chromatin domains

  • Alexandra C. Kölbl
  • Daniela Weigl
  • Medhanie Mulaw
  • Tobias Thormeyer
  • Stefan K. Bohlander
  • Thomas Cremer
  • Steffen DietzelEmail author


A nonrandom radial nuclear organization of genes has been well documented. This study provides further evidence that radial positioning depends on features of corresponding ∼1 Mbp chromatin domains (CDs), which represent the basic units of higher-order chromatin organization. We performed a quantitative three-dimensional analysis of the radial nuclear organization of three genes located on chromosome 1 in a DG75 Burkitt lymphoma-derived cell line. Quantitative real-time polymerase chain reaction revealed similar transcription levels for the three selected genes, whereas the total expression strength (TES) calculated as the sum of transcription of all genes annotated within a surrounding window of about 1 Mbp DNA differed for each region. Radial nuclear position of the studied CDs correlated with TES, i.e., the domain with the highest TES occupied the most interior position. Positions of CDs with stable TES values were stably maintained even under experimental conditions, resulting in genome-wide changes of the expression levels of many other genes. Our results strongly support the hypothesis that knowledge of the local chromatin environment is essential to predict the radial nuclear position of a gene.


nuclear architecture chromatin organization gene positioning 



chromatin domain


chromosome territory


cycle threshold


delta (difference) in Ct value compared to the control


fluorescence in situ hybridization


interchromatin compartment


interchromosomal domain


Mega base pairs


quantitative real-time polymerase chain reaction


reverse transcription polymerase chain reaction


spherical 1 Mbp chromatin domain (model)


total expression strength



This work was financially supported by the Deutsche Forschungsgemeinschaft, Collaborative Research Center 684 (SFB684) projects A2 to SD and TC and A6 to SKB. We thank Jens Nagel for the practical help with the data evaluation.

Supplementary material

10577_2012_9309_MOESM1_ESM.xls (400 kb)
ESM 1 Microarray data of differentially regulated probe sets after 24 h of CALM-AF10 induction. Induced cell populations were compared to non-induced CALM/AF10+ cells, as well as induced and non-induced empty vector control cells (24 h after induction).Only differentially regulated probe sets that are associated with annotated genes are shown, as indicated in the table header. The fold differential regulation is indicated in the last column. Probe.Set.ID = affymetrix probe set identifier; Representative.Public.ID = Representative Public domain ID; UniGene.ID = Unigene id of the gene being interrogated; Gene.Symbol = Symbol of the gene; Chromosomal.Location = chromosomal location of the gene in the human genome; Ensembl = Ensembl id; Entrez.Gene = Entrez gene id; SwissProt = SwissProt id of the protein product of the gene; RefSeq.Protein.ID = RefSeq id of the protein; RefSeq.Transcript.ID = RefSeq id of the transcript; fold change = change between induced and control samples, described as a ratio of expression of a given probe set (XLS 400 kb)


  1. Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Kupper K, Joffe B, Thormeyer T, von Hase J, Yang S, Rohr K, Leonhardt H, Solovei I, Cremer C, Fakan S, Cremer T (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosom Res 14(7):707–733CrossRefGoogle Scholar
  2. Bartova E, Kozubek S, Jirsova P, Kozubek M, Gajova H, Lukasova E, Skalnikova M, Ganova A, Koutna I, Hausmann M (2002) Nuclear structure and gene activity in human differentiated cells. J Struct Biol 139(2):76–89CrossRefPubMedGoogle Scholar
  3. Ben-Bassat H, Goldblum N, Mitrani S, Goldblum T, Yoffey JM, Cohen MM, Bentwich Z, Ramot B, Klein E, Klein G (1977) Establishment in continuous culture of a new type of lymphocyte from a “Burkitt like’ malignant lymphoma (line D.G.-75). Int J Cancer 19(1):27–33CrossRefPubMedGoogle Scholar
  4. Bohlander SK, Muschinsky V, Schrader K, Siebert R, Schlegelberger B, Harder L, Schemmel V, Fonatsch C, Ludwig WD, Hiddemann W, Dreyling MH (2000) Molecular analysis of the CALM/AF10 fusion: identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients. Leukemia 14(1):93–99CrossRefPubMedGoogle Scholar
  5. Bolzer A, Kreth G, Solovei I, Köhler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Three-dimensional maps of all chromosome positions demonstrate a probabilistic order in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3(5):e157CrossRefPubMedGoogle Scholar
  6. Bornfleth H, Edelmann P, Zink D, Cremer T, Cremer C (1999) Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys J 77(5):2871–2886CrossRefPubMedGoogle Scholar
  7. Bornkamm GW, Berens C, Kuklik-Roos C, Bechet JM, Laux G, Bachl J, Korndoerfer M, Schlee M, Holzel M, Malamoussi A, Chapman RD, Nimmerjahn F, Mautner J, Hillen W, Bujard H, Feuillard J (2005) Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Res 33(16):e137CrossRefPubMedGoogle Scholar
  8. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91(6):845–854CrossRefPubMedGoogle Scholar
  9. Brown JM, Green J, Das Neves RP, Wallace HA, Smith AJ, Hughes J, Gray N, Taylor S, Wood WG, Higgs DR, Iborra FJ, Buckle VJ (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. Journal Cell Biol 182(6):1083–1097. doi: 10.1083/jcb.200803174 CrossRefGoogle Scholar
  10. Bryant S, Manning DL (1998) Formaldehyde gel electrophoresis of total RNA. Methods Mol Biol 86:69–72PubMedGoogle Scholar
  11. Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18(10):1119–1130CrossRefPubMedGoogle Scholar
  12. Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16(8):825–831CrossRefPubMedGoogle Scholar
  13. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301. doi: 10.1038/35066075 CrossRefPubMedGoogle Scholar
  14. Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2(3):a003889. doi: 10.1101/cshperspect.a003889 CrossRefPubMedGoogle Scholar
  15. Cremer T, Kreth G, Koester H, Fink RH, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10(2):179–212CrossRefPubMedGoogle Scholar
  16. Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosom Res 9(7):541–567CrossRefGoogle Scholar
  17. Cremer M, Kupper K, Wagler B, Wizelman L, von Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162(5):809–820CrossRefPubMedGoogle Scholar
  18. Cremer T, Markaki Y, Hübner B, Zunhammer A, Strickfaden H, Beichmanis S, Heß M, Schermelleh L, Cremer M, Cremer C (2011) Chromosome territory organization within the nucleus. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine. Wiley Online Library. doi: 10.1002/3527600906
  19. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145(6):1119–1131CrossRefPubMedGoogle Scholar
  20. de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 85(1):154–159. doi: 10.1038/labinvest.3700208 PubMedGoogle Scholar
  21. Dietzel S, Jauch A, Kienle D, Qu GQ, Holtgreve-Grez H, Eils R, Münkel C, Bittner M, Meltzer PS, Trent JM, Cremer T (1998) Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosom Res 6(1):25–33CrossRefGoogle Scholar
  22. Dietzel S, Schiebel K, Little G, Edelmann P, Rappold GA, Eils R, Cremer C, Cremer T (1999) The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 252(2):363–375CrossRefPubMedGoogle Scholar
  23. Dietzel S, Zolghadr K, Hepperger C, Belmont AS (2004) Differential large-scale chromatin compaction and intranuclear positioning of transcribed versus non-transcribed transgene arrays containing beta-globin regulatory sequences. J Cell Sci 117(Pt 19):4603–4614CrossRefPubMedGoogle Scholar
  24. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. doi: 10.1038/nature11082 CrossRefPubMedGoogle Scholar
  25. Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK (1996) The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci U S A 93(10):4804–4809CrossRefPubMedGoogle Scholar
  26. Fiegler H, Carr P, Douglas EJ, Burford DC, Hunt S, Scott CE, Smith J, Vetrie D, Gorman P, Tomlinson IP, Carter NP (2003) DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosom Cancer 36(4):361–374. doi: 10.1002/gcc.10155 CrossRefPubMedGoogle Scholar
  27. Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114(4):212–229CrossRefPubMedGoogle Scholar
  28. Foster HA, Abeydeera LR, Griffin DK, Bridger JM (2005) Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118(Pt 9):1811–1820CrossRefPubMedGoogle Scholar
  29. Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447(7143):413–417CrossRefPubMedGoogle Scholar
  30. Gondor A, Ohlsson R (2009) Chromosome crosstalk in three dimensions. Nature 461(7261):212–217. doi: 10.1038/nature08453 CrossRefPubMedGoogle Scholar
  31. Grasser F, Neusser M, Fiegler H, Thormeyer T, Cremer M, Carter NP, Cremer T, Müller S (2008) Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 121(Pt 11):1876–1886. doi: 10.1242/jcs.026989 CrossRefPubMedGoogle Scholar
  32. Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosom Res 9(7):569–584CrossRefGoogle Scholar
  33. Hakim O, Sung MH, Voss TC, Splinter E, John S, Sabo PJ, Thurman RE, Stamatoyannopoulos JA, de Laat W, Hager GL (2011) Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res 21(5):697–706. doi: 10.1101/gr.111153.110 CrossRefPubMedGoogle Scholar
  34. Hepperger C, Otten S, von Hase J, Dietzel S (2007) Preservation of large-scale chromatin structure in FISH experiments. Chromosoma 116(2):117–133CrossRefPubMedGoogle Scholar
  35. Hepperger C, Mannes A, Merz J, Peters J, Dietzel S (2008) Three-dimensional positioning of genes in mouse cell nuclei. Chromosoma 117(6):535–551. doi: 10.1007/s00412-008-0168-2 CrossRefPubMedGoogle Scholar
  36. Hu P, Kinyamu HK, Wang L, Martin J, Archer TK, Teng C (2008) Estrogen induces estrogen-related receptor alpha gene expression and chromatin structural changes in estrogen receptor (ER)-positive and ER-negative breast cancer cells. J Biol Chem 283(11):6752–6763. doi: 10.1074/jbc.M705937200 CrossRefPubMedGoogle Scholar
  37. Joti Y, Hikima T, Nishino Y, Kamda F, Hihara S, Takata H, Ishikawa T, Maeshima K (2012) Chromosomes without a 30-nm chromatin fiber. Nucleus 3(5):1–7. doi: 10.4161/nucl.21222 Google Scholar
  38. Kim IH, Nagel J, Otten S, Knerr B, Eils R, Rohr K, Dietzel S (2007) Quantitative comparison of DNA detection by GFP-lac repressor tagging, fluorescence in situ hybridization and immunostaining. BMC Biotechnol 7(1):92CrossRefPubMedGoogle Scholar
  39. Kizilyaprak C, Spehner D, Devys D, Schultz P (2010) In vivo chromatin organization of mouse rod photoreceptors correlates with histone modifications. PLoS One 5(6):e11039. doi: 10.1371/journal.pone.0011039 CrossRefPubMedGoogle Scholar
  40. Kocanova S, Kerr EA, Rafique S, Boyle S, Katz E, Caze-Subra S, Bickmore WA, Bystricky K (2010) Activation of estrogen-responsive genes does not require their nuclear co-localization. PLoS Genet 6(4):e1000922. doi: 10.1371/journal.pgen.1000922 CrossRefPubMedGoogle Scholar
  41. Koehler D, Zakhartchenko V, Froenicke L, Stone G, Stanyon R, Wolf E, Cremer T, Brero A (2009) Changes of higher order chromatin arrangements during major genome activation in bovine preimplantation embryos. Exp Cell Res 315(12):2053–2063CrossRefPubMedGoogle Scholar
  42. Kosak ST, Groudine M (2004) Form follows function: the genomic organization of cellular differentiation. Genes Dev 18(12):1371–1384CrossRefPubMedGoogle Scholar
  43. Kreth G, Finsterle J, von Hase J, Cremer M, Cremer C (2004) Radial arrangement of chromosome territories in human cell nuclei: a computer model approach based on gene density indicates a probabilistic global positioning code. Biophys J 86(5):2803–2812. doi: 10.1016/S0006-3495(04)74333-7 CrossRefPubMedGoogle Scholar
  44. Küpper K, Kölbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, Fiegler H, Carter NP, Speicher MR, Cremer T, Cremer M (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116(3):285–306CrossRefPubMedGoogle Scholar
  45. Kurz A, Lampel S, Nickolenko JE, Bradl J, Benner A, Zirbel RM, Cremer T, Lichter P (1996) Active and inactive genes localize preferentially in the periphery of chromosome territories. J Cell Biol 135(5):1195–1205CrossRefPubMedGoogle Scholar
  46. Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8(2):104–115CrossRefPubMedGoogle Scholar
  47. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2(8):1–11Google Scholar
  48. Li C, Wong WH (2003) DNA-Chip Analyzer (dChip). In: Parmigiani G, Garrett ES, Irizarry R, Zeger SL (eds) The analysis of gene expression data: methods and software. Springer, New York, pp 120–141CrossRefGoogle Scholar
  49. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. doi: 10.1126/science.1181369 CrossRefPubMedGoogle Scholar
  50. Lossos IS, Czerwinski DK, Wechser MA, Levy R (2003) Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies. Leuk Off J Leuk Soc Am Leuk Res Fund UK 17(4):789–795. doi: 10.1038/sj.leu.2402880 CrossRefGoogle Scholar
  51. Mahy NL, Perry PE, Bickmore WA (2002a) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159(5):753–763. doi: 10.1083/jcb.200207115 CrossRefPubMedGoogle Scholar
  52. Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002b) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157(4):579–589. doi: 10.1083/jcb.200111071 CrossRefPubMedGoogle Scholar
  53. Malyavantham KS, Bhattacharya S, Alonso WD, Acharya R, Berezney R (2008) Spatio-temporal dynamics of replication and transcription sites in the mammalian cell nucleus. Chromosoma 117(6):553–567. doi: 10.1007/s00412-008-0172-6 CrossRefPubMedGoogle Scholar
  54. Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, Cremer M (2012) The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Bioessays 34(5):412–426. doi: 10.1002/bies.201100176 CrossRefPubMedGoogle Scholar
  55. Mayer R, Brero A, von Hase J, Schroeder T, Cremer T, Dietzel S (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6:44CrossRefPubMedGoogle Scholar
  56. Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445(7126):379–781CrossRefPubMedGoogle Scholar
  57. Meaburn KJ, Misteli T (2008) Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol 180(1):39–50CrossRefPubMedGoogle Scholar
  58. Mehta IS, Amira M, Harvey AJ, Bridger JM (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 11(1):R5. doi: 10.1186/gb-2010-11-1-r5 CrossRefPubMedGoogle Scholar
  59. Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosom Res Int J Mol Supramol Evol Asp Chromosom Biol 19(1):37–51. doi: 10.1007/s10577-010-9177-0 CrossRefGoogle Scholar
  60. Moen PT Jr, Johnson CV, Byron M, Shopland LS, de la Serna IL, Imbalzano AN, Lawrence JB (2004) Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell 15(1):197–206CrossRefPubMedGoogle Scholar
  61. Müller WG, Rieder D, Kreth G, Cremer C, Trajanoski Z, McNally JG (2004) Generic features of tertiary chromatin structure as detected in natural chromosomes. Mol Cell Biol 24(21):9359–9370. doi: 10.1128/MCB.24.21.9359-9370.2004 CrossRefPubMedGoogle Scholar
  62. Murmann AE, Gao J, Encinosa M, Gautier M, Peter ME, Eils R, Lichter P, Rowley JD (2005) Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Exp Cell Res 311(1):14–26CrossRefPubMedGoogle Scholar
  63. Nagel J, Gross B, Meggendorfer M, Preiss C, Grez M, Brack-Werner R, Dietzel S (2012) Stably integrated and expressed retroviral sequences can influence nuclear location and chromatin condensation of the integration locus. Chromosoma. doi: 10.1007/s00412-012-0366-9
  64. Neusser M, Schubel V, Koch A, Cremer T, Müller S (2007) Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 116(3):307–320CrossRefPubMedGoogle Scholar
  65. Nielsen JA, Hudson LD, Armstrong RC (2002) Nuclear organization in differentiating oligodendrocytes. J Cell Sci 115(Pt 21):4071–4079CrossRefPubMedGoogle Scholar
  66. Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36(10):1065–1071CrossRefPubMedGoogle Scholar
  67. Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Corcoran AE, Fraser P (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5(8):e192. doi: 10.1371/journal.pbio.0050192 CrossRefPubMedGoogle Scholar
  68. Parada L, McQueen P, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5(7):R44CrossRefPubMedGoogle Scholar
  69. Postberg J, Alexandrova O, Cremer T, Lipps HJ (2005) Exploiting nuclear duality of ciliates to analyse topological requirements for DNA replication and transcription. J Cell Sci 118(Pt 17):3973–3983. doi: 10.1242/jcs.02497 CrossRefPubMedGoogle Scholar
  70. Rouquette J, Cremer C, Cremer T, Fakan S (2010) Functional nuclear architecture studied by microscopy: present and future. Int Rev Cell Mol Biol 282:1–90. doi: 10.1016/S1937-6448(10)82001-5 CrossRefPubMedGoogle Scholar
  71. Sadoni N, Targosz BS, Englmann A, Fesser S, Koch J, Schindelhauer D, Zink D (2008) Transcription-dependent spatial arrangements of CFTR and conserved adjacent loci are not conserved in human and murine nuclei. Chromosoma 117(4):381–397. doi: 10.1007/s00412-008-0157-5 CrossRefPubMedGoogle Scholar
  72. Sanyal A, Bau D, Marti-Renom MA, Dekker J (2011) Chromatin globules: a common motif of higher order chromosome structure? Curr Opin Cell Biol 23(3):325–331. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  73. Schermelleh L, Solovei I, Zink D, Cremer T (2001) Two-color fluorescence labeling of early and mid-to-late replicating chromatin in living cells. Chromosom Res 9:77–80CrossRefGoogle Scholar
  74. Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS, Eskiw CH, Luo Y, Wei CL, Ruan Y, Bieker JJ, Fraser P (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42(1):53–61. doi: 10.1038/ng.496 CrossRefPubMedGoogle Scholar
  75. Skalníková M, Kozubek S, Lukášová E, Bártová E, Jirsová P, Cafourková A, Koutná I, Kozubek M (2000) Spatial arrangement of genes, centromeres and chromosomes in human blood cell nuclei and its changes during the cell cycle, differentiation and after irradiation. Chromosom Res 8(6):487–499CrossRefGoogle Scholar
  76. Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276(1):10–23CrossRefPubMedGoogle Scholar
  77. Solovei I, Kreysing M, Lanctot C, Kosem S, Peichl L, Cremer T, Guck J, Joffe B (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137(2):356–368CrossRefPubMedGoogle Scholar
  78. Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005) Interchromosomal associations between alternatively expressed loci. Nature 435(7042):637–645. doi: 10.1038/nature03574 CrossRefPubMedGoogle Scholar
  79. Stadler S, Schnapp V, Mayer R, Stein S, Cremer C, Bonifer C, Cremer T, Dietzel S (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5(1):44CrossRefPubMedGoogle Scholar
  80. Strickfaden H, Zunhammer A, van Koningsbruggen S, Kohler D, Cremer T (2010) 4D chromatin dynamics in cycling cells: Theodor Boveri’s hypotheses revisited. Nucleus 1(3):284–297. doi: 10.4161/nucl.1.3.11969 CrossRefPubMedGoogle Scholar
  81. Szabo A, Perou CM, Karaca M, Perreard L, Palais R, Quackenbush JF, Bernard PS (2004) Statistical modeling for selecting housekeeper genes. Genome Biol 5(8):R59. doi: 10.1186/gb-2004-5-8-r59 CrossRefPubMedGoogle Scholar
  82. Takizawa T, Gudla PR, Guo L, Lockett S, Misteli T (2008) Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev 22(4):489–498CrossRefPubMedGoogle Scholar
  83. Tumbar T, Belmont AS (2001) Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol 3:134–139CrossRefPubMedGoogle Scholar
  84. van Driel R, Fransz PF, Verschure PJ (2003) The eukaryotic genome: a system regulated at different hierarchical levels. J Cell Sci 116(Pt 20):4067–4075CrossRefPubMedGoogle Scholar
  85. Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113(Pt 9):1565–1576PubMedGoogle Scholar
  86. Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 160(5):685–697CrossRefPubMedGoogle Scholar
  87. Wang J, Shiels C, Sasieni P, Wu PJ, Islam SA, Freemont PS, Sheer D (2004) Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 164(4):515–526CrossRefPubMedGoogle Scholar
  88. Williams RR, Broad S, Sheer D, Ragoussis J (2002) Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 272(2):163–175CrossRefPubMedGoogle Scholar
  89. Williams RR, Azuara V, Perry P, Sauer S, Dvorkina M, Jorgensen H, Roix J, McQueen P, Misteli T, Merkenschlager M, Fisher AG (2006) Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci 119(Pt 1):132–140CrossRefPubMedGoogle Scholar
  90. Zink D, Amaral MD, Englmann A, Lang S, Clarke LA, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166(6):815–825CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alexandra C. Kölbl
    • 1
  • Daniela Weigl
    • 1
  • Medhanie Mulaw
    • 2
    • 3
  • Tobias Thormeyer
    • 1
  • Stefan K. Bohlander
    • 2
    • 3
  • Thomas Cremer
    • 1
  • Steffen Dietzel
    • 1
    • 4
    Email author
  1. 1.Department Biologie IILudwig-Maximilians-Universität MünchenPlaneggGermany
  2. 2.Medizinische Klinik und Poliklinik IIILudwig-Maximilians-Universität MünchenMunichGermany
  3. 3.Clinical Cooperative Group LeukemiaHelmholtz Zentrum MünchenMunichGermany
  4. 4.Walter-Brendel-Zentrum für Experimentelle MedizinLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations