Chromosome Research

, Volume 19, Issue 7, pp 925–938 | Cite as

A guided tour of large genome size in animals: what we know and where we are heading

  • France DufresneEmail author
  • Nicholas Jeffery


The study of genome size diversity is an ever-expanding field that is highly relevant in today’s world of rapid and efficient DNA sequencing. Animal genome sizes range from 0.02 to 132.83 pg but the majority of animal genomes are small, with the most of these genome sizes being less than 5 pg. Animals with large genomes (>10 pg) are scattered within some invertebrates, including the Platyhelminthes, crustaceans, and orthopterans, and also the vertebrates including the Actinopterygii, Chondrichthyes, and some amphibians. In this paper, we explore the connections between organismal phenotype, physiology, and ecology to genome size. We also discuss some of the molecular mechanisms of genome shrinkage and expansion obtained through comparative studies of species with full genome sequences and how this may apply to species with large genomes. As most animal species sequenced to date have been in the small range for genome size (especially invertebrates) due to sequencing costs and to difficulties associated with large genome assemblies, an understanding of the structural composition of large genomes is still lacking. Studies using next-generation sequencing are being attempted for the first time in animals with larger genomes. Such analyses using low genome coverage are providing a glimpse of the composition of repetitive elements in animals with more complex genomes. These future studies will allow a better understanding of factors leading to genomic obesity in animals.


Genome size cell size large genomes transposable element next-generation sequencing 



Transposable elements


Next generation sequencing


Long terminal repeat retrotransposon


Short interspersed repetitive elements


Long interspersed repetitive elements


BAC end sequences





We thank Dr. R. Gregory for organizing an insightful workshop on genome size research held in Guelph, Ontario in 2010 and Dr. J. Bainard and two anonymous reviewers for insightful comments.


  1. Arkhipova I, Meselson M (2000) Tranposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci 97:14473–14477PubMedCrossRefGoogle Scholar
  2. Bachmann K, Rheinsmith EL (1973) Nuclear DNA amounts in pacific Crustacea. Chromosoma 43:225–236PubMedCrossRefGoogle Scholar
  3. Beaton MJ, Hebert PDN (1989) Miniature genomes and endopolyploidy in cladoceran crustaceans. Genome 32:1048–1053CrossRefGoogle Scholar
  4. Beçak W, Beçak ML, Schreiber G, Lavalle D, Amorim FO (1970) Interspecific variability of DNA content in Amphibia. Experientia 26:204–206PubMedCrossRefGoogle Scholar
  5. Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceaous plants. Proc Roy Soc Lond B 181:109–135CrossRefGoogle Scholar
  6. Bennett MD (1976) DNA amount, latitude, and crop plant distribution. Env Exp Biol 16:93–108CrossRefGoogle Scholar
  7. Bennett MD (1977) The time and duration of meiosis. Phil Trans R Soc Lond B 277:201–277CrossRefGoogle Scholar
  8. Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phyt 106:177–200CrossRefGoogle Scholar
  9. Bennett MD, Smith JB, Lewis Smith RI (1982) DNA amounts of angiosperms from the Antarctic and South Georgia. Env Exp Biol 22:307–318CrossRefGoogle Scholar
  10. Bennett MD, Price HJ, Johnston JS (2008) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101:777–790PubMedCrossRefGoogle Scholar
  11. Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36PubMedCrossRefGoogle Scholar
  12. Bennetzen JL (2005) TE, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627PubMedCrossRefGoogle Scholar
  13. Blumenstiel JP (2011) Evolutionary dynamics of transposable elements in a small RNA world. Trends Genet 27:23–31PubMedCrossRefGoogle Scholar
  14. Bonnivard E, Catrice O, Ravaux J (2009) Survey of genome size in 28 hydrothermal vent species covering 10 families. Genome 52:524–536PubMedCrossRefGoogle Scholar
  15. Bosco G, Campbell P, Leiva-Neto JT, Markow TA (2007) Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species. Genetics 177:1277–1290PubMedCrossRefGoogle Scholar
  16. Bray N, Dubchak I, Pachter L (2003) AVID: a global alignment program. Gen Res 13:97–102CrossRefGoogle Scholar
  17. Brown DD, Dawid IB (1968) Specific gene amplification in oocytes. Science 160:272–280PubMedCrossRefGoogle Scholar
  18. Cavalier-Smith T (1985) Cell volume and the evolution of eukaryotic genome size. In: Cavalier-Smith T (ed) The evolution of genome size. Wiley, Chichester, pp 104–184Google Scholar
  19. Charlesworth B, Langley CH (1989) The population genetics of Drosophila transposable elements. Ann Rev Genet 23:251–287PubMedCrossRefGoogle Scholar
  20. Chen MS, SanMiguel P, Bennetzen JL (1998) Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. Genetics 148:435–443PubMedGoogle Scholar
  21. Dalloul RA, Long JA, Zimin AV (2010) Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8(9):e1000475. doi: 10.1371/journal.pbio.1000475 CrossRefGoogle Scholar
  22. Davidson WS, Koop BF, Jones SJM, Iturra P, Vidal R, Maass A et al (2010) Sequencing the genome of the Atlantic salmon Salmo salar. Genome Biol 11:403PubMedGoogle Scholar
  23. de Boer JG, Yazawa R, Davidson WS, Koop BF (2007) Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genomics 8:422PubMedCrossRefGoogle Scholar
  24. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314PubMedCrossRefGoogle Scholar
  25. Denver DR, Morris K, Lynch M, Thomas WK (2004) High direct estimates of the mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430:679–682PubMedCrossRefGoogle Scholar
  26. Devine SE, Chissoe SL, Eby Y, Wilson RK, Boeke JD (1997) A transposon-based strategy for sequencing repetitive DNA in eukaryotic genomes. Genet Res 7:551–563Google Scholar
  27. Dufresne F, Hebert PDN (1998) Temperature-related differences in life-history characteristics between diploid and polyploid clones of the Daphnia pulex complex. Ecoscience 5:433–437Google Scholar
  28. Duvernell DD, Pryor SR, Adams SM (2004) Teleost fish genomes contain a diverse array of L1 retrotransposon lineages that exhibit a low copy number and high rate of turnover. J Mol Evol 59:298–308PubMedCrossRefGoogle Scholar
  29. Escribano R, McLaren IA, Klein Breteler WCM (1992) Innate and acquired variation of nuclear DNA contents of marine copepods. Genome 35:602–610CrossRefGoogle Scholar
  30. Finston TL, Herbert PD, Foottit RB (1995) Genome size variation in aphids. Insect Biochem Mol Biol 25:189–196CrossRefGoogle Scholar
  31. Furano AV, Duvernell DD, Boissinot S (2004) L1 (line-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20:9–14PubMedCrossRefGoogle Scholar
  32. Gentles AJ, Wakefield MJ, Kohany O, Gu W, Batzer MA, Pollock DD et al (2007) Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 17:992–1004PubMedCrossRefGoogle Scholar
  33. Gilbert N, Labuda D (2000) Evolutionary inventions and continuity of CORE-SINEs in mammals. J Mol Biol 298:365–377PubMedCrossRefGoogle Scholar
  34. Goldberg SMD, Johnson J, Busam D, Feldblyum T, Ferriera S, Friedman R et al (2006) A Sanger pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci 103:11240–11245PubMedCrossRefGoogle Scholar
  35. Gosalvez J, López-Fernandez C, Esponda P (1980) Variability of the DNA content in five orthopteran species. Caryologia 33:275–281Google Scholar
  36. Grandbastien M, Audeon C, Bonnivard E (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cyt Genome Res 110:229–241CrossRefGoogle Scholar
  37. Graur D, Shuali Y, Li W-H (1989) Deletions in processed pseudogenes accumulate faster in rodents than in humans. J Mol Evol 28:279–285PubMedCrossRefGoogle Scholar
  38. Gregory TR (2000) Nucleotypic effects without nuclei: Genome size and erythrocyte size in mammals. Genome 43:895–901PubMedCrossRefGoogle Scholar
  39. Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev 76:65–101PubMedCrossRefGoogle Scholar
  40. Gregory TR (2002a) A bird’s eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution 56:121–130PubMedGoogle Scholar
  41. Gregory TR (2002b) Genome size and developmental complexity. Genetica 115:131–146PubMedCrossRefGoogle Scholar
  42. Gregory TR (2004) Insertion-deletion biases and the evolution of genome size. Gene 324:15–34.PubMedCrossRefGoogle Scholar
  43. Gregory TR (2005a) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot 95:133–146PubMedCrossRefGoogle Scholar
  44. Gregory TR (2005b) The evolution of genome size in animals. In: TR Gregory (ed) The evolution of the genome. pp. 4–71Google Scholar
  45. Gregory TR (2005c) Synergy between sequence and size in Large-scale genomics. Nature Rev Genetics 6:699–708CrossRefGoogle Scholar
  46. Gregory TR (2011). Animal Genome Size Database. http://www.genomesize.comGoogle Scholar
  47. Gregory TR, Hebert PDN (2002) Genome size estimates for some oligochaete annelids. Can J Zool 80:1485–1489CrossRefGoogle Scholar
  48. Gregory TR, Johnston JS (2008) Genome size diversity in the family Drosophilidae. Heredity 101:228–238PubMedCrossRefGoogle Scholar
  49. Gregory TR, Hebert PDN, Kolasa J (2000) Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity 84:201–208PubMedCrossRefGoogle Scholar
  50. Gregory TR, Nedved O, Adamowicz SJ (2003) C-value estimates for 31 species of ladybird beetles (Coleoptera: Coccinellidae). Hereditas 139:121–127CrossRefGoogle Scholar
  51. Grime JP (1983) Prediction of weed and crop response to climate based upon measurements of nuclear DNA content. Aspect Appl Biol 4:87–98Google Scholar
  52. Hardie DC, Hebert PDN (2003) The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome 46:683–706PubMedCrossRefGoogle Scholar
  53. Hardie DC, Hebert PDN (2004) Genome size evolution in fishes. Can J Fish Aquat Sci 61:1636–1646CrossRefGoogle Scholar
  54. Hebert PDN, Beaton MJ (1990) Breeding system and genome size of the rhabdocoel turbellarian Mesostoma ehrenbergii. Genome 33:719–724CrossRefGoogle Scholar
  55. Hinegardner R (1974) Cellular DNA content of the Mollusca. Comp Biochem Physiol 47A:447–460CrossRefGoogle Scholar
  56. Hoegg S, Meyer A (2005) Hox clusters as models for vertebrate genome evolution. Trends Genet 21:421–424PubMedCrossRefGoogle Scholar
  57. Horner HA, Macgregor HC (1983) C value and cell volume: their significance in the evolution and development of amphibians. J Cell Sci 63:135–146PubMedGoogle Scholar
  58. Hughes AL, Friedman R (2008) Genome size reduction in the chicken has involved massive loss of ancestral protein-coding genes. Mol Biol Evol 25:2681–2688PubMedCrossRefGoogle Scholar
  59. Hughes AL, Hughes MK (1995) Small genomes for better flyers. Nature 377:391PubMedCrossRefGoogle Scholar
  60. Hughes A, Piontkivska H (2005) DNA repeat arrays in chicken and human genomes and the adaptive evolution of avian genome size. BMC Evol Biol 5:12PubMedCrossRefGoogle Scholar
  61. Johnston JS, Ross LD, Hughes DP, Kathirithamby J (2004) Tiny genomes and endoreduplication in Strepsiptera. Insect Mol Biol 13:581–585PubMedCrossRefGoogle Scholar
  62. Juan C, Petitpierre E (1991) Evolution of genome size in darkling beetles (Tenebrionidae, Coleoptera). Genome 34:169–173CrossRefGoogle Scholar
  63. Kidwell MG (2002) TE and the evolution of genome size in eukaryotes. Genetica 115:49–63PubMedCrossRefGoogle Scholar
  64. Knight C, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology, and phenotype. Ann Bot 95:177–190PubMedCrossRefGoogle Scholar
  65. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  66. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc Lond 82:651–663CrossRefGoogle Scholar
  67. Lesage P, Todeschini AL (2005) Happy together: the life and times of Ty retrotransposons and their hosts. Cyt Genome Res 110:70–90CrossRefGoogle Scholar
  68. Li R, Fan W, Tian G, Zhu H, He L, Cai J et al (2010) The sequence and de novo assembly of the giant panda genome. Nature 463:311–317PubMedCrossRefGoogle Scholar
  69. Licht LA, Lowcock LE (1991) Genome size and metabolic-rate in salamanders. Comp Biochem Physiol 100:83–92CrossRefGoogle Scholar
  70. Lynch M (2007) The origins of genome architecture. Sinauer Associates, SunderlandGoogle Scholar
  71. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404PubMedCrossRefGoogle Scholar
  72. Malone CD, Hannon GJ (2009) Small RNA as guardians of the genome. Cell 136:656–668PubMedCrossRefGoogle Scholar
  73. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141PubMedCrossRefGoogle Scholar
  74. McLaren IA, Sevigny JM, Corkett CJ (1988) Body sizes, development rates, and genome sizes among Calanus species. Hydrobiologia 167–168:275–284CrossRefGoogle Scholar
  75. McLysaght A, Enright AJ, Skrabanek L, Wolfe KH (2000) Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17:22–36PubMedCrossRefGoogle Scholar
  76. Mirsky AE, Ris H (1951) The deoxyribonucleic acid content of animal cells and its evolutionary significance. J Gen Physiol 34:451–462PubMedCrossRefGoogle Scholar
  77. Moriyama EN, Petrov DA, Hartl DL (1998) Genome size and intron size in Drosophila. Mol Biol Evol 15:770–773PubMedGoogle Scholar
  78. Myers EW, Sutton GG, Delcher AL (2000) A whole-genome assembly of Drosophila. Science 287:2196–2204PubMedCrossRefGoogle Scholar
  79. Nagl W (1976) DNA endoreduplication and polyteny understood as evolutionary strategies. Nature 261:614–615PubMedCrossRefGoogle Scholar
  80. Neafsey DE, Palumbi SR (2003) Genome size evolution in pufferfish: a comparative analysis of diodontid and tetraodontid pufferfish genomes. Genome Res 13:821–830PubMedCrossRefGoogle Scholar
  81. Nene V, Wortman JR, Lawson D et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723PubMedCrossRefGoogle Scholar
  82. Novick PA, Basta H, Floumanhaft M (2009) The evolutionary dynamics of autonomous non-LTR retrotransposons in the lizard Anolis carolinensis shows more similarity to fish than mammals. Mol Biol Evol 26:1811–1822PubMedCrossRefGoogle Scholar
  83. Ogata H, Fujbuchi W, Kanehisa M (1996) The size differences among mammalian introns are due to the accumulation of small deletions. Febs Letters 390:99–103PubMedCrossRefGoogle Scholar
  84. Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM (2007) The mode and tempo of genome size evolution in eukaryotes. Genome Res 17:594–601PubMedCrossRefGoogle Scholar
  85. Olmo E (1973) Quantitative variations in nuclear DNA and phylogenesis of Amphibia. Karyologia 26:43–68Google Scholar
  86. Olmo E (1974) Further data on the genome size in the urodeles. B Zool 41:29–33CrossRefGoogle Scholar
  87. Olmo E (1983) Nucleotype and cell size in vertebrates: a review. Basic Appl Histochem 27:227–256PubMedGoogle Scholar
  88. Olmo E, Morescalchi A (1975) Evolution of the genome and cell sizes in salamanders. Experientia 31:804–806PubMedCrossRefGoogle Scholar
  89. Olmo E, Odierna E (1982) Relationships between DNA content and cell morphometric parameters in reptiles. Basic Appl Histochem 26:27–34PubMedGoogle Scholar
  90. Ophir R, Graur D (1997) Patterns and rates of indel evolution in processed pseudogenes from humans and murids. Gene 205:191–202PubMedCrossRefGoogle Scholar
  91. Orel N, Puchta H (2003) Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol Biol 51:523–531PubMedCrossRefGoogle Scholar
  92. Organ CL, Canoville A, Reisz RR (2011) Paleogenomic data suggest mammal-like genome size in the ancestral amniote and derived large genome size in amphibians. J Evol Biol 24:372–380PubMedCrossRefGoogle Scholar
  93. Otto SP, Whitton J (2000) Polyploidy: incidence and evolution. Annu Rev Genet 34:401–437PubMedCrossRefGoogle Scholar
  94. Pedersen RA (1971) DNA content, ribosomal gene multiplicity, and cell size in fish. J Exp Zool 177:65–79PubMedCrossRefGoogle Scholar
  95. Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28PubMedCrossRefGoogle Scholar
  96. Petrov DA (2002) DNA loss and evolution of genome size in Drosophila. Genetica 115:81–91PubMedCrossRefGoogle Scholar
  97. Petrov DA, Hartl DL (1998) High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol 15:293–302PubMedGoogle Scholar
  98. Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2001) Evidence for DNA loss as a determinant of genome size. Science 287:1060–1062CrossRefGoogle Scholar
  99. Rasch EM, Rasch RW (1981) Cytophotometric determination of genome size for two species of cave crickets (Orthoptera, Rhaphidophoridae). J Histochem Cytochem 29:885Google Scholar
  100. Rasmussen DA, Noor MAF (2009) What can you do with 0.1× genome coverage? A case study based on a genome survey of the scuttle fly Megaselia scalaris (Phoridae). BMC Genomics 10:382. doi: 10.1186/1471-2164-10-382 PubMedCrossRefGoogle Scholar
  101. Rees DJ, Dufresne F, Glémet H (2007) Amphipod genome sizes: first estimates for Arctic species reveal genomic giants. Genome 50:151–158PubMedCrossRefGoogle Scholar
  102. Rees DJ, Belzile C, Glémet H, Dufresne F (2008) Large genomes among caridean shrimp. Genome 51:159–163PubMedCrossRefGoogle Scholar
  103. Rheinsmith EL, Hinegardner R, Bachmann K (1974) Nuclear DNA amounts in Crustacea. Comp Biochem Physiol 48B:343–348Google Scholar
  104. Sela N, Kim E, Ast G (2010) The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol 11:R59PubMedCrossRefGoogle Scholar
  105. Sexsmith LE (1968) DNA values and karyotypes of amphibians. Ph.D. thesis, Department of Botany, University of TorontoGoogle Scholar
  106. Shirasu K, Shulman AH, Lahaye T (2000) A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915PubMedCrossRefGoogle Scholar
  107. Smith CD, Ziminb A, Holtc A, Abouheif E, Benton R, Cash E et al (2011) Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proc Natl Acad Sci 108:5673–5678PubMedCrossRefGoogle Scholar
  108. Stingo V, Capriglione T, Rocco L, Improta R, Morescalchi A (1989) Genome size and A-T rich DNA in selachians. Genetica 79:197–205CrossRefGoogle Scholar
  109. Szarski H (1970) Changes in the amount of DNA in cell nuclei during vertebrate evolution. Nature 226:651–652PubMedCrossRefGoogle Scholar
  110. Szarski H (1983) Cell size and the concept of wasteful and frugal evolutionary strategies. J Theor Biol 105:201–209PubMedCrossRefGoogle Scholar
  111. Thomson KS, Muraszko K (1978) Estimation of cell size and DNA content in fossil fishes and amphibians. J Exp Zool 205:315–320CrossRefGoogle Scholar
  112. Tiersch TR, Wachtel SS (1991) On the evolution of genome size of birds. J Hered 82:363–368PubMedGoogle Scholar
  113. Vergilino R, Belzile C, Dufresne F (2009) Genome size evolution and polyploidy in the Daphnia pulex complex (Cladocera: Daphniidae). Biol J Linn Soc 97:68–79CrossRefGoogle Scholar
  114. Vicient CM, Suoniemi A, Anamthawat-Jonsson K (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784PubMedCrossRefGoogle Scholar
  115. Vinogradov AE (1995) Nucleotypic effect in homeotherms: body-mass-corrected basal metabolic rates of mammals is related to genome size. Evolution 49:1249–1259CrossRefGoogle Scholar
  116. Vinogradov AE (1997) Nucleotypic effect in homeotherms: Body-mass independent resting metabolic rate of passerine birds is related to genome size. Evolution 51:220–225CrossRefGoogle Scholar
  117. Vinogradov AE (1999) Intron–genome size relationship on a large evolutionary scale. J Mol Evol 49:376–384PubMedCrossRefGoogle Scholar
  118. Vinogradov AE (2000) Larger genomes for molluskan land pioneers. Genome 43:211–212PubMedCrossRefGoogle Scholar
  119. Vinogradov AE (2004) Testing genome complexity. Science 304:389–390PubMedCrossRefGoogle Scholar
  120. Vinogradov AE (2005) Genome size and chromatin condensation in vertebrates. Chromosoma 113:362–369PubMedCrossRefGoogle Scholar
  121. Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F et al (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–183PubMedCrossRefGoogle Scholar
  122. Wendel JF, Cronn RC, Alvarez I (2002) Intron size and genome size in plants. Mol Biol Evol 19:2346–2352PubMedGoogle Scholar
  123. Wessler SR (2006) Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci 103:17600–17601PubMedCrossRefGoogle Scholar
  124. Westerman M, Barton NH, Hewitt GM (1987) Differences in DNA content between two chromosomal races of the grasshopper Podisma pedestris. Heredity 58:221–228CrossRefGoogle Scholar
  125. White MM, McLaren IA (2000) Copepod development rates in relation to genome size and 18S rDNA copy number. Genome 43:750–755PubMedCrossRefGoogle Scholar
  126. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713PubMedCrossRefGoogle Scholar
  127. Xu P, Li J, Li Y, Cui R, Wang J, Wang J et al (2011) Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences. BMC Genomics 12:188. doi: 10.1186/1471-2164-12-188 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Département de Biologie, Centre d’Études NordiquesUniversité du Québec à RimouskiQuébecCanada
  2. 2.Department of Integrative BiologyUniversity of GuelphGuelphCanada

Personalised recommendations