Advertisement

Chromosome Research

, 19:729 | Cite as

Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes

  • Pavlína Zatloukalová
  • Eva Hřibová
  • Marie Kubaláková
  • Pavla Suchánková
  • Hana Šimková
  • Cabrera Adoración
  • Günter Kahl
  • Teresa Millán
  • Jaroslav Doležel
Article

Abstract

Cultivated chickpea is the third most important legume after field bean and garden pea worldwide. Despite considerable breeding towards improved yield and resistance to biotic and abiotic stresses, the production of chickpea remained stagnant, but molecular tools are expected to increase the impact of current improvement programs. As a first step towards this goal, various genetic linkage maps have been established and markers linked to resistance genes been identified. However, until now, only one linkage group (LG) has been assigned to a specific chromosome. In the present work, mitotic chromosomes were sorted using flow cytometry and used as template for PCR with primers designed for genomic regions flanking microsatellites. These primers amplify sequence-tagged microsatellite site markers. This approach confirmed the assignment of LG8 to the smallest chromosome H. For the first time, LG5 was linked to the largest chromosome A, LG4 to a medium-sized chromosome E, while LG3 was anchored to the second largest chromosome B. Chromosomes C and D could not be flow-sorted separately and were jointly associated to LG6 and LG7. By the same token, chromosomes F and G were anchored to LG1 and LG2. To establish a set of preferably diagnostic cytogenetic markers, the genomic distribution of various probes was verified using FISH. Moreover, a partial genomic bacterial artificial chromosome (BAC) library was constructed and putative single/low-copy BAC clones were mapped cytogenetically. As a result, two clones were identified localizing specifically to chromosomes E and H, for which no cytogenetic markers were yet available.

Keywords

BAC-FISH Chromosome isolation Flow cytometric sorting Fluorescence in situ hybridization Genome mapping Repetitive DNA 

Abbreviations

BAC

Bacterial artificial chromosome

FISH

Fluorescence in situ hybridization

LG

Linkage group

MAS

Marker-assisted selection

NOR

Nucleolus organizing region

rDNA

Ribosomal DNA

Notes

Acknowledgments

We are grateful to Dr. P. Winter (GenXPro GmbH, Frankfurt Innovation Centre, Frankfurt am Main, Germany) and Dr. B. Hüttel (MPI for Plant Breeding Research, Cologne, Germany) for providing primers for chromosome-specific microsatellite markers and valuable suggestions concerning PCR with these markers. We thank our colleagues Romana Šperková, Bc. and Jitka Weiserová, Bc. for excellent technical assistance. We appreciate valuable comments and suggestions by two anonymous reviewers. This work was supported by Ministry of Education, Youth, and Sports (grant award no. LC06004).

References

  1. Abbo S, Miller TE, Reader SM, Dunford RP, King LP (1994) Detection of ribosomal DNA sites in lentil and chickpea by fluorescent in situ hybridization. Genome 37:713–716PubMedCrossRefGoogle Scholar
  2. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond Ser B Biol Sci 274:227–274CrossRefGoogle Scholar
  3. Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EYS, Stiller J, Smits L, Imelfort M, Manoli S, McKenzie M, Kubaláková M, Šimková H, Batley J, Fleury D, Doležel J, Edwards D (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J. doi: 10.1111/j.1467-7652.2010.00587.x
  4. Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A 101:15289–15294PubMedCrossRefGoogle Scholar
  5. Doležel J, Lucretti S, Schubert I (1994) Plant chromosome analysis and sorting by flow cytometry. Crit Rev Plant Sci 13:275–309Google Scholar
  6. Doležel J, Kubaláková M, Bartoš J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chromosome Res 12:77–91PubMedCrossRefGoogle Scholar
  7. Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C (2007) Chromosome-based genomics in cereals. Chromosome Res 15:51–66PubMedCrossRefGoogle Scholar
  8. FAO (2010): http://faostat.fao.org/ (Updated: 02 September 2010)
  9. Flandez-Galvez H, Ford R, Pang ECK, Taylor PWJ (2003) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106:1447–1456PubMedGoogle Scholar
  10. Fukui K, Ohmido N, Khush GS (1994) Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor Appl Genet 87:893–899Google Scholar
  11. Galasso I, Pignone D (1992) Characterization of chickpea chromosomes by banding techniques. Genet Res Crop Evol 39:115–119Google Scholar
  12. Galasso I, Frediani M, Maggiani M, Creminini R, Pignone D (1996) Chromatin organization by banding technique, in situ hybridization, and nuclear DNA content in Cicer L. (Leguminosae). Genome 39:258–265PubMedCrossRefGoogle Scholar
  13. Gil J, Cubero JI (1993) Inheritance of seed coat thickness in chickpea (Cicer arietinum L.) and its evolutionary implications. Plant Breed 111:257–260CrossRefGoogle Scholar
  14. Gil J, Nadal S, Luna D, Moreno MT, De Haro A (1996) Variability of some physico-chemical characters in Desi and Kabuli chickpea types. J Sci Food Agri 71:179–184CrossRefGoogle Scholar
  15. Gortner G, Nenno M, Weising K, Zink D, Nagl W, Kahl G (1998) Chromosome localization and distribution of simple sequence repeats and the Arabidopsis-type telomere sequences in the genome of Cicer arietinum L. Chromosome Res 6:97–104PubMedCrossRefGoogle Scholar
  16. Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P, Prakash AB, Farmer A, Bhide M, Shah T, Gaur PM, Upadhyaya HD, Bhatia S, Cook DR, May GD, Varshney RK (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor Appl Genet 122:1577–1589PubMedCrossRefGoogle Scholar
  17. Hřibová E, Doleželová M, Doležel J (2008) Localization of BAC clones on mitotic chromosomes of Musa acuminata using fluorescence in situ hybridization. Biol Plantarum 52:445–452CrossRefGoogle Scholar
  18. Janda J, Šafář J, Kubaláková M, Bartoš J, Kovářová P, Suchánková P, Pateyron S, Číhalíková J, Sourdille P, Šimková H, Fairaivre-Rampant P, Hřibová E, Bernard M, Lukaszewski A, Doležel J, Chalhoub B (2006) Advanced resources for plant genomics: BAC library specific for the short arm of wheat chromosome 1B. Plant J 47:977–986PubMedCrossRefGoogle Scholar
  19. Kejnovský E, Vrána J, Matsunaga S, Souček P, Široký J, Doležel J, Vyskot B (2001) Localization of male-specifically expressed MROS genes of Silene latifolia by PCR on flow-sorted sex chromosomes and autosomes. Genetics 158:1269–1277PubMedGoogle Scholar
  20. Kovářová P, Navrátilová A, Macas J, Doležel J (2007) Chromosome analysis and sorting in Vicia sativa using flow cytometry. Biol Plantarum 51:43–48CrossRefGoogle Scholar
  21. Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:1362–1372PubMedCrossRefGoogle Scholar
  22. Kubaláková M, Valárik M, Bartoš J, Vrána J, Číhalíková J, Molnár-Láng M, Doležel J (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46:893–905PubMedCrossRefGoogle Scholar
  23. Kubaláková M, Kovářová P, Suchánková P, Číhalíková J, Bartoš J, Lucretti S, Watanabe N, Kianian SF, Doležel J (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170:823–829PubMedCrossRefGoogle Scholar
  24. Lucretti S, Doležel J (1997) Bivariate flow karyotyping in broad bean (Vicia faba). Cytometry 28:236–242PubMedCrossRefGoogle Scholar
  25. Macas J, Doležel J, Lucretti S, Pich U, Meister A, Fuchs J, Schubert I (1993) Localization of seed protein genes on flow-sorted field bean chromosomes. Chromosome Res 1:107–115PubMedCrossRefGoogle Scholar
  26. Mayer KFX, Taudien S, Martis M, Šimková H, Suchánková P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, Scholz U, Graner A, Platzer M, Doležel J, Stein N (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505PubMedCrossRefGoogle Scholar
  27. Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato S, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263PubMedCrossRefGoogle Scholar
  28. Millan T, Winter P, Jüngling R, Gil J, Rubio J, Cho S, Cobos MJ, Iruela M, Rajesh PN, Tekeoglu M, Khal G, Muehlbauer FJ (2010) A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175:175–189CrossRefGoogle Scholar
  29. Moreno MT, Cubero JI (1978) Variation in Cicer arietinum L. Euphytica 27:465–485CrossRefGoogle Scholar
  30. Nayak SN, Zhu H, Varghese N, Datta S, Choi HK, Horres R, Jüngling R, Singh J, Kavi Kishor PB, Sivaramakrishnan S, Hoisington DA, Kahl G, Winter P, Cook DR, Varshney RK (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441PubMedCrossRefGoogle Scholar
  31. Neumann P, Požárková D, Vrána J, Doležel J, Macas J (2002) Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Res 10:63–71PubMedCrossRefGoogle Scholar
  32. Ocampo B, Venora G, Erico A, Singh KB, Saccardo F (1992) Karyotype analysis in the genus Cicer. J Genet Breed 46:229–240Google Scholar
  33. Ohri D, Pal M (1991) The origin of chickpea (Cicer arietinum L.): karyotype and nuclear DNA content. Heredity 66:367–372CrossRefGoogle Scholar
  34. Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Bergès H, Eversole K, Appels R, Šafář J, Šimková H, Doležel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104PubMedCrossRefGoogle Scholar
  35. Peterson DG, Tomkins JP, Frisch DA, Wing RA, Paterson AH (2000) Construction of plant bacterial artificial chromosome (BAC) libraries: An illustrated guide. J Agric Genom 5: http://www.ncgr.org/research/jag
  36. Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tušková R, Číhalíková J, Vrána J, Šimková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Doležel J, Chalhoub B (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968PubMedCrossRefGoogle Scholar
  37. Šafář J, Šimková H, Kubaláková M, Číhalíková J, Suchánková P, Bartoš J, Doležel J (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223PubMedCrossRefGoogle Scholar
  38. Šimková H, Svensson JT, Condamine P, Hřibová E, Suchánková P, Bhat PR, Bartoš J, Šafář J, Close TJ, Doležel J (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294PubMedCrossRefGoogle Scholar
  39. Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119Google Scholar
  40. Sorokin A, Marthe F, Houben A, Pich U, Graner A, Künzel G (1994) Polymerase chain reaction-mediated localization of RFLP clones to microisolated translocation chromosomes of barley. Genome 37:550–555PubMedCrossRefGoogle Scholar
  41. Staginnus C, Winter P, Desel C, Schmidt T, Kahl G (1999) Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea (Cicer arietinum L.) genome. Plant Mol Biol 39:1037–1050PubMedCrossRefGoogle Scholar
  42. Staginnus C, Desel C, Schmidt T, Kahl G (2010) Assembling a puzzle of dispersed retrotransposable sequences in the genome of chickpea (Cicer arietinum L.). Genome 53:1090–1102PubMedCrossRefGoogle Scholar
  43. Suchánková P, Kubaláková M, Kovářová P, Bartoš J, Číhalíková J, Molnár-Láng M, Endo TR, Doležel J (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet 113:651–659PubMedCrossRefGoogle Scholar
  44. Tang XM, de Boer JM, van Eck HJ, Bachem C, Visser RGF, de Jong H (2009) Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Res 17:899–915PubMedCrossRefGoogle Scholar
  45. Tar’an B, Warkentin TD, Tullu A, Vandenberg A (2007) Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 50:26–34PubMedCrossRefGoogle Scholar
  46. Venora G, Ocampo B, Singh KB, Saccardo F (1995) Karyotype of a Kabuli-type chickpea (Cicer arietinum L.) by image analysis system. Caryologia 48:147–155Google Scholar
  47. Vláčilová K, Ohri D, Vrána J, Číhalíková J, Kubaláková M, Kahl G, Doležel J (2002) Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosome Res 10:695–706PubMedCrossRefGoogle Scholar
  48. Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B, Scholz U, Šimková H, Kubaláková M, Choulet F, Taudien S, Platzer M, Feuillet C, Fahima T, Budak H, Doležel J, Keller B, Stein N (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23:1706–1718PubMedCrossRefGoogle Scholar
  49. Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequenced-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101PubMedCrossRefGoogle Scholar
  50. Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Ptaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from C. arietinum x C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:155–1163CrossRefGoogle Scholar
  51. Xiong Z, Kim JS, Pires JC (2010) Integration of genetic, physical, and cytogenetic maps for Brassica rapa chromosome A7. Cytogen Genome Res 129:190–198CrossRefGoogle Scholar
  52. Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Pavlína Zatloukalová
    • 1
    • 4
  • Eva Hřibová
    • 1
  • Marie Kubaláková
    • 1
  • Pavla Suchánková
    • 1
  • Hana Šimková
    • 1
  • Cabrera Adoración
    • 2
  • Günter Kahl
    • 3
  • Teresa Millán
    • 2
  • Jaroslav Doležel
    • 1
    • 5
  1. 1.Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
  2. 2.Genetics DepartmentUniversity of CórdobaCórdobaSpain
  3. 3.Molecular BioSciences, BiocenterFrankfurt am MainGermany
  4. 4.Department of Functional Genomics and Proteomics, Laboratory of Molecular Plant PhysiologyMasaryk UniversityBrnoCzech Republic
  5. 5.Institute of Experimental BotanyOlomoucCzech Republic

Personalised recommendations